TECHNICAL MANUAL

OPERATOR'S AND ORGANIZATIONAL MAINTENANCE MANUAL

MODEM, DIGITAL DATA MD-920/G

 (NSN 5820-00-155-8576)This copy is a reprint which includes current pages from Changes 1 and 2

WARNING

HIGH VOLTAGE

is used in this equipment
DEATH ON CONTACT
may result if safety precautions are not observed

115 volts ac is present within the ICF modem. Perform all possible maintenance with power removed. If necessary to perform operations with covers removed and power on, be extremely careful to avoid contact with high voltage.

DON‘T TAKE CHANCES!

CHANGE

No. 3 Washington, DC, 1 December 1987

OPERATOR'S AND ORGANIZATIONAL MAINTENANCE MANUAL MODEM, DIGITAL DATA MD-920A/G (NSN 5820-01-057-6356)

TM 11-5820-804-12/NAVELEX 0969-LP-1694013/TO 31R5-2G-271, 7 June 1976, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page. Added or revised illustrations are indicated by a vertical bar adjacent to the identification number.

2. File this change sheet in the front of the publication for reference purposes.

Distribution authorized to the Department of Defense and DOD contractors only for official use or for administration or operational purposes. This determination was made on 4 September 1987. Other requests for this document will be referred to Commander, US Army Communication-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-P, Fort Monmouth, NJ 07703-5000.

DESTRUCTION NOTICE-Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

By Order of the Secretaries of the Army, the Navy and the Air Force:

CARL E.VUONO General, United States Army Chief of Staff

Official:
R. L. DILWORTH

Brigadier General, United States Army
The Adjutant General

WILLIAM CHIAIESE
 Vice Admiral, United States Navy Commander, Space and Naval Warfare Systems Command

Official:

ALFRED G. HANSEN
General, USAF, Commander, Air Force
LARRY D. WELSH
Logistics Command
General, USAF
Chief of Staff

DISTRIBUTION:

To be distributed in accordance with DA Form 12-36 literature requirements for MD-920/G, MD-920A/G.

OPERATOR'S AND ORGANIZATIONAL MAINTENANCE MANUAL

MODEM, DIGITAL DATA MD-920A/G
 (NSN 5820-01-057-6356)

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in back of this manual direct to: Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-ME-MP, Fort Monmouth, New Jersey 07703-5000.

For Air Force, submit AFTO Form 22 (Technical Order System Publication Improvement Report and Reply) in accordance with paragraph 6-5, Section VI, T.O. 00-5-1. Forward direct to prime ALC/MST.

For Navy, mail comments to the Commander, Space and Naval Warfare Systems Command, ATTN: SPAWAR 8122, Washington, DC, 20363-5100.

In either case a reply will be furnished direct to you.

Figure	Title	Page
2-10	External coder/decoder interface phasing	.2-9
-2-11	Digital user interface	.2-10
2-12	Standard data and clock input characteristics (normal polarity)	.2-11
2-13	Open circuit standard data and clock output characteristics (normal polarity)	2-11
2-14	Two ICF modems used to interface two digital users	2-12
2-15	ICF modem overall dimensions	2-13
2-16	ICF modem rear view	2-14
2-17	Standard clock input inverting switch S1 (viewed from top of input interface card, SM-D-742037, A2A1A2A4)	2-15
2-18	Line driver polarity inverting switches S1 and S2 (viewed from top of line driver card, SM-D-742053, A2A1A1A21, A2A1A1A22, or A2A1A1A23).	.2-16
2-19	External coder interface clock inverting switches S1 through S6 (viewed from top of coder interface card, SM-D-742049, A2A1A2A5)	.2-16
2-20	LOS/cable driver output level selection switch S1 (viewed from top of LOS/cable driver card, SM-D-742081, A2A1A2A3).	2-16
2-21	LOS/cable receiver and decoder selection switches S1 through S4 (viewed from component side of LOS/cable receiver and decoder card, SM-D-742089, A2A1A2A1)	2-17
2-22	LOS/cable receiver and decoder adjustments	2-18
2-22.1	MRZ interface selection switches S1 and S2 (viewed from top of MRZ interface card, SM-D-877791, A2A1A2A2	.2-19
2-23	Equalization waveforms	-2-20
3-1	ICF modem, operator controls	..3-1
5-1	Typical PC card pin locations	. 5 -3
5-2	Thumbwheel switch assembly terminal boards	.5-4
5-3	Power supply removal and installation	..5-5
	LIST OF TABLES	
Table	Title	Page
2-1	ICF modem interconnections (fig. 2-16)	2-14
2-2	Site interface (J5) signal list	2-15
2-3	Coder interface (J6) signal list	2-15
2-4	Direct digital output interface polarity selection	2-16
2-5	External coder/decoder interface clock polarity selection	2-16
2-6	Power level selection at LOS/cable driver outputs	2-17
2-7	LOS/cable receiver and decoder switch settings	2-19
2-8	Operation of LOS/cable receiver and decoder selection switches	2-19
2-9	Operation of MRZ interface selection switches	2-19
3-1	Operator controls, indicators, and connectors	3-2
3-2	Operational switch settings	3-4
3-3	Self-test initial switch settings	3-5
3-4	Self-test procedure	3-5
3-5	Coder/decoder test procedure	3-6
4-1	Preventive maintenance checks and services-weekly schedule (modem not operating)	4-1
4-2	Preventive maintenance checks and services-weekly schedule (modem operating)	4-1
4-3	Operational checks	4-2
5-1	Preventive maintenance checks and services (PMCS)	5-1
5-2	Troubleshooting.	5-2
5-3	Power supply measurements	5-3
5-4	Thumbwheel switch, truth tables	.5-3

Figure 1-1. Modem, digital data MD-920A/G (ICF Modem).
Change 2 1-0

CHAPTER 1

INTRODUCTION

Section I. GENERAL

1-1. Scope.

This manual describes Modem, Digital Data MD920A/G, hereinafter to as the ICF modem (fig. 1-1), It includes installation, operation, maintenance, and troubleshooting for operator/ organizational maintenance. Appendix A contains references and Appendix B contains the maintenance allocation chart.

1-2. Consolidated Index of Army Publications and Blank Forms

Refer to the latest issue of DA Pam 25-30 to determine whether there are new editions, changes, or additional publications pertaining to the equipment.

1-3. Maintenance Forms, records, and Reports
a. Reports of Maintenance and Unsatisfactory Equipment. Department of the Army forms and procedures used for equipment maintenance will be those
prescribed DA Pam 738-750, as contained in Maintenance Management Update. Air Force Personnel will use AFR 66-1 for maintenance reporting and TO0035D54 for unsatisfactory equipment reporting. Navy personnel will report maintenance performed utilizing the Maintenance Data Collection Subsystem (MDCS) IAW OPNAVINST 4790.2, Vol 3 and unsatisfactory material/conditions (UR submissions) IAW OPNAVINST 4790.2, Vol 2, chapter 17.
b. Report of Packaging and handling Deficiencies. Fill out and forward SF 364 (Report of Discrepancy ROD) as prescribed in AR 735-11-2/DLAR 4140.55/NAVMATINST 4355.73B/AFR 400-54/ MCO 430.3 H .
c. Discrepancy in Shipment Report (DISREP) (SF 361). Fill out and forward Discrepancy in Shipment Report (DISREP) (SF 361) as prescribed in AR 5538/NAVSUPINST 4610.33C/AFR 75-18/MCO P4610.19D/DLAR 4500.15.

EL 5820-804-12-TM-2

Figure 1-2. ICF modem system interface
Change 3 1-1

1-3.1. Reporting Equipment Improvement Recommendations (EIR)

a. Army. If your equipment needs improvement, let us know. Send us an EIR. You, the user, are the only one who can tell us what you don't like about the design. Put it on an SF 368 (Quality Deficiency Report). Mail it to Commander, US Army Communications-Electronics Command and Fort Monmouth, ATTN: AMSEL-PA-MA-D, Fort Monmouth, New Jersey 07703-5000. We'll send you a reply.
b. Air Force. Air Force personnel are encouraged to submit EIR's in accordance with AFR 900-4.
c. Navy. Navy personnel are encouraged to submit EIR's through their local Beneficial Suggestion Program.

1-4. Administrative Storage

Administrative storage of the ICF modem shall be
handled as follows:
a. The IFC modem must be stored in a dry, sheltered area not subject to long periods of extreme cold and heat.
b. Before storing the unit, clean it (para 4-5) and spot-paint bare metal parts on the front panel [para 5-4).
c. Before and after storage, perform organizational preventive maintenance checks and services (table 51).
d. Every 30 days in storage, the ICF modem shall be connected to ac power source and turned on for 10 minutes. Also operate all switches at least five times to clean the contacts.

1-5. Destruction of Army Electronics Materiel

Destruction of Army Electronics materiel to prevent enemy use shall be in accordance with TM 750-244-2.

Section II. DESCRIPTION AND DATA

1-6. Purpose and Use

The ICF modem provides a means of interfacing digital data with a Modem, Digital Data MD-921/G (PSK modem) in a remotely-located satellite communication terminal. The ICF modem converts between the baseband data signals required by a digital user and the signal format required for transmissions over the interconnect facility link (tfig. 1-2). The modem has independent transmit and receive sections which provide the user with the capability for fully duplex digital communication. The modem will process data at any rate between $19.200 \mathrm{~kb} / \mathrm{s}$ and $5.0000 \mathrm{Mb} / \mathrm{s}$. Selftest and on-line fault monitoring functions are built into the modem. An external error-correcting coder/ decoder can be employed if required to improve the quality of the communications.

1-7. Description

The ICF modem ffig. 1-3 and 1-4) is designed for rack mounting in a standard 19 -inch equipment rack. It is 12 '/4 inches high and 22 inches deep.
Operating controls are located on the front panel and under the top cover behind the front panel. Indicators and test jacks are also located on the front panel. Two fans and the external interface connectors are located on the rear of the chassis. The chassis contains one card file assembly, which has two files capable of accepting 24 cards each. The card file assembly is accessible through the top cover. The card file assembly, A2A1, contains 16 printed circuit cards in the A1 file and 21 cards in the A2 file. Located on the top section of the
chassis forward of the card file are the oscillator assemblies A2Y1 and A2Y2. The power supply, A2PS1, is located on the bottom section of the chassis forward of the card file.

1-8. System Application

Several system configurations are possible using the ICF modem (fig. 1-5). The major interfaces and options are listed in following paragraphs.
a. Data Rates. The modem is capable of processing any data rate between $19.200 \mathrm{~kb} / \mathrm{s}$ and $5.0000 \mathrm{Mb} / \mathrm{s}$. Transmit and receive section data rates are independently selectable.
b. Remote Site Interfaces. The interface between ICF modem and the MD-921/G (usually located in or near the earth terminal) may be accomplished in the two ways listed below. For detailed information on applications and interface requirements, refer to the systems planning section of chapter 2.
(1) Interface with a remotely located MD921/G via 50Ω or 75Ω coaxial cable, or 75Ω balanced cable.
(2) Interface with a remotely located MD921/G via a line-of-sight (LOS) microwave link.
(3) Interface with a remotely located MD921/G via a fiber optic (FO) cable link.
c. Error-Correcting Coder/Decoder. The modem operates either in the no coding mode or with an external high gain coder/decoder.
d. Digital User Interface. Direct interface with a nearby digital user is accomplished via the MIL-STD188 inputs and outputs of the modem.

Figure 1-3. ICF modem viewed from top rear (top cover removed).
Change 2 1-2.1

1-9. Items Comprising and Operable Equipment

a. ICF Modem (fig. 1-1). Modem, Digital Data MD-9250A/G (NSN 5820-01-057-6356; SM-D-877791.
b. Accessory Equipment
(1) AC Power Cord, SM-C-759676.
(2) Site Interface Mating Connector J5, MS-3126E24-61W.
(3) Coder/Decoder Interface Mating Connector J6, MS-3126E24-61P.
(4) Glenier Strain Relief (2 each), GTR20524B (SM-A-731358-2).
(5) Chassis Slide Halves (2 each), 11OQDP-22-A-1.

1-10. Tabulated Data
Prime Power

Voltage

Current Frequency Power
Operating Conditions
Operating
Temperature
Relative Humidity
Elevation
120 ± 10 percent volts ac single phase 3 amperes maximum 45 to 420 Hz 300 watts maximum

Continuous
$32^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$
5 to 100 percent Up to 10,000 feet

Line of Sight Baseboard Interface
Output
Power Level $\quad-12 \mathrm{dBm}$ (terminated) Impedance $75 \mathrm{ohms}, \pm 10$ percent, unbalanced

Figure 1-4. ICF modem viewed from bottom front (bottom cover removed).
Change 2 1-3

Figure 1-5. ICF modem applications.
Change 2 1-4

Input	
Power Level	$\underset{\text { (terminated) }}{-25 \text { to }-35 \mathrm{dBm}}$
Impedance	75 ohms, +10 percent, unbalanced
Frequency	
Range	$19.2 \mathrm{~kb} / \mathrm{s}$ to $5.0 \mathrm{Mb} / \mathrm{s}$
Shielded RF Cable Interface	
Output	
Power Level	$\begin{aligned} & +23,+10, \text { and } 0 \mathrm{dBm} \\ & \text { (terminated) } \end{aligned}$
Impedance	50 ohms, +10 percent, unbalanced
	75 ohms, +10 percent, unbalanced
	75 ohms, +10 percent, balanced
Input	
Power Level	$\begin{array}{r} +5 \text { to }-15 \mathrm{dBm} \\ \text { (terminated) } \end{array}$
Impedance	50 ohms, +10 percent, unbalanced
	75 ohms, +10 percent, unbalanced
	75 ohms, +10 percent, balanced
Frequency	
Range	$19.2 \mathrm{~kb} / \mathrm{s}$ to $5.0 \mathrm{Mb} / \mathrm{s}$
Line Drivers and Receivers	
Output Voltage	Positive and negative
	$6+1.5$ volts opet circuit
	(measured between
signal	
	pair)
Sense Source Impedance	Zero state, negative voltage
	75 ohms, + 10 percent, balanced

Short Circuit Cur-
rent
Wave Shape

Line Receiver In-
put
Impedance
Line Receiver
Sensitivity

Fiber Optics Interface
Line Drivers and
Receivers Output Voltage
signal
Source
Impedance
Line Receiver In-
put
Impedance
Line Receiver
Sensitivity
0.1 ampere or less

With 75 ohms +10 percent resistive load, rise and fall times are 20 nanoseconds or less.

75 ohms, +10 percent,
balanced
+0.1 volts maximum input required to cause correct switching.

Positive and negative
$6+1.5$ volts opet circuit (measured between
pair)
75 ohms, + 10 percent, balanced

75 ohms, + 10 percent, balanced
+0.1 volts maximum input required to cause correct switching
Frequency Range $19.2 \mathrm{~kb} / \mathrm{s}$ to $9.9999 \mathrm{Mb} / \mathrm{s}$

Change 1 1-5

CHAPTER 2

SERVICE UPON RECEIPT AND INSTALLATION

Section I. SYSTEMS PLANNING

2-1. General

The ICF modem interfaces between a PSK modem and a digital user over either a shielded cable, a line-of-sight (LOS) microwave link or a fiber optic (FO cable link ffig. 2-1 2-2 and 2-2.1). The ICF modem includes circuits that aid in testing the performance of a digital satellite
communications link as well as providing a self-test function. The ICF modem may be used in conjunction with an external error correcting coder/decoder. The operating configurations of the ICF modem are controlled by front panel and internal switches.

EL 5820-804-1 2-TM-6

Figure 2-1. ICF/PSK modem configuration via line-of-sight (LOS).

Figure 2-2. ICF/PSM configuration via shielded rf cable.
Change 2 2-1

Figure 2-2.1. ICF/PSK modem configuration via fiber optic (FO) cable.

2-2. ICF Interface

a. General. All ICF interface signals are available at rear panel site interface connector J5, except the LOS input, which is a rear panel BNC connector. The PSK and ICF modems contain identical LOS/cable/FO driver circuits and LOS/cable/FO receiver and decoder circuits. These circuits provide the appropriate interface levels and code conversion to and from the digital user's format to make the interface signal compatible with either transmission system The fault indicator status of the ICF modem may be monitored remotely.
b. Input Signals. The desired ICF input signal is internally selected at installation. Details for the LOS/cable/FO receiver and decoder input selection are given in paragraph 2-17. Any one of the following input sources may be selected:
(1) $75-\mathrm{ohm}$ balanced cable.
(2) $75-\mathrm{ohm}$ unbalanced cable.
(3) $50-\mathrm{ohm}$ unbalanced cable.
(4) LOS microwave receiver.
(5) 75 -ohm balanced FO NRZ receiver.

NOTE
If a cable is used for the interface, the required equalization procedure is given in paragraph 2-18,
c. Output Signals. All outputs available to the ICF system are present on the ICF modem rear panel and their levels are controlled by internal switches. Detailed instructions for setting these switches are given in paragraph 2-3. Any one (but only one) of the following outputs may be connected.
(1) 75 -ohm balanced cable driver.
(2) 75 -ohm unbalanced cable driver.
(3) 50 ohm balanced cable driver.
(4) LOS microwave driver.
(5) 75 -ohm balanced FO NRZ driver.
d. Fault Alarm Monitor Signal Characteristics. The ICF modem contains several on-line fault monitoring circuits which monitor the fault status of both the transmitter and receiver. A relay contained in the ICF modem is actuated to provide a contact closure whenever one or more faults occur. This relay is shown in figure 2-3 in the no-fault (deenergized) condition. The fault alarm monitor output is used in conjunction with a compatible remote monitoring device. Connection of this signal is optional dependent upon the configuration and operational requirements of the site.

Change 22.2

Figure 2-3. ICF interface.

2-3. ICF System Requirements

a. Signal Characteristics. A non-return to zero (NRZ) data format, in which a logic 0 is transmitted as a negative voltage, is employed at the digital user interface. The NRZ format results in a baseband signal that would be difficult to equalize over a long
cable and would cause degraded operation over a line-of-sight microwave link if automatic frequency control (AFC) is used in the FM receivers. Therefore, the ICF (and the PSK) modem contains circuits which convert between a NRZ format and a bipolar NRZ format tilig. 24). The bipolar NRZ format, in which logic ZERO'S are transmitted as 0 volts and logic ONE's are transmitted as

Change 2 2-2.1

EL 5820-804-12-TM-9
Figure 2-4. NRZ and bipolar NRZ data
alternating equal positive and negative voltages, is used for data transmission over the interconnect facility.
B. Line-of-Sight (LOS)Microwave Installations.
(1) The general form of the baseband signal spectrum for the bipolar NRZ data format (random data) is shown in figure 2-5. Most of the signal energy is contained in the frequency range from DC to the data rate (R_{D}), and additional signal power occurs in the higher frequency sidebands. In general, an overall interconnect facility system bandwidth equal to twice the data rate (or the symbol rate if coding is used) is required to obtain adequate system performance; three times the data rate provides improved performance.

EL 5820-804-12-TM-10

Figure 2-5. Bipolar NRZ data signal spectrum.
(2) The ICF modem receiver contains internal filters to reduce the high-frequency noise at the line-ofsight microwave system output. The recommended usage of these filters is given below:

Symbol rate	3dB filter bandwidth	Approximate noise bandwidth
$19.200 \mathrm{~kb} / \mathrm{s}$ to $22.5 .00 \mathrm{~kb} / \mathrm{s}$	550 kHz	710 kHz
$225.01 \mathrm{~kb} / \mathrm{s}$ to $1.8000 \mathrm{Mb} / \mathrm{s}$	3.6 MHz	5.7 MHz
$1.8000 \mathrm{Mb} / \mathrm{s}$ to $5.0000 \mathrm{Mb} / \mathrm{s}$	10 MHz	16 MHz

(3) Detailed instructions for selecting the filters are given in paragraph 2-17. A worst-case signal-to-noise ratio at the ICF modem receiver input of 20 dB is required from the line-of-sight microwave system.
c. Cable Installations.
(1) Cable selection. The cable selected for data transmission using an ICF modem should normally
provide no more than 30 dB power loss at 5 MHz (regardless of the actual data rate). The cable loss for installation must be determined from the cable manufacturer's data and the cable length. For example, assume that RG-217/U cable (unbalanced type cable) is being considered for a 10,000 -foot installation. The cable loss characteristic, in $\mathrm{dB} / 100$ feet, for RG-217/U cable is shown in figure 2-6. From figure 2-6, it can be seen that cable loss characteristic (a) at 5 MHz is 0.28 $d B / 100$ feet. Therefore, for a cable length (L) of 10,000 feet of RG-217/U, the total cable loss can be determined from the relationship:

$$
\begin{aligned}
& \text { cable loss }=\left(a_{5} \mathrm{~L}\right) \div 100 \\
& \text { cable loss }=(0.28 \times 10,000) \div 100=28 \mathrm{~dB}
\end{aligned}
$$

Since the cable loss in the example given above is less than 30 dB , that length of RG-217/U would be usable in the installation. Cable selection may be simplified by using the length requirement to determine the maximum value of the loss characteristic (a) at 5 MHz which can be used. The maximum value of a can be determined from the relationship:

$$
a_{\max }=3000 \div \mathrm{L}
$$

(2) Cable classification. The transmission of baseband data over an interconnect facility cable results in unequal phase distortion at the output. The ICF modem receiver contains equalization networks to compensate for this phase distortion. Detailed instructions for adjusting the equalizers are given in paragraph 2-18. Further information on configuring the LOS/cable receiver and decoder circuits to provide the appropriate equalization is given in paragraph 2-17. depending on whether the cable is classified as long, medium, or short. Although the phase distortion is not directly related to the 5 MHz cable loss, the parameters are so closely related that' cable loss may be used to determine the equalization requirements. To determine cable classification, calculate the cable loss based on the cable length and attenuation factor at 5 MHz (loss = $a_{5} L / 100$) and assign the appropriate classification in accordance with the following list to ensure proper alinement (para 2-18).

EL 5820-804-12-TM-11

Figure 2-6. Attenuation characteristics of RG-217/U cable.

```
Cable loss at \(5 \mathbf{M H z}\)
        to 3 dB
    3 dB to 12 dB
    12 dB to 30 dB
```

Classification
short
midrange
long

(3) ICF transmitter output power. The output power level on all LOS/cable outputs is controlled by a single internal switch which is set during installation of the modem (para 2-17), The proper switch setting depends on the interconnect facility cable loss. The switch is set so that maximum power is available to the LOS/cable receiver at the far end of the cable, but that this power does not exceed +5 dBm . After the cable attenuation characteristics at 5 MHz are used to determine the cable loss (as described in preceding paragraphs), one of the three available power levels (0 $\mathrm{dBm}, 10 \mathrm{dBm}$, or 23 dBm) is selected to provide the maximum power, but not exceeding +5 dBm , at the far end of the cable.
d. Fiber Optic (FO) NRZ Installations. The NRZ digital interface is composed of balanced line drivers and receivers. The following factors must be considered in planning the use of this interface.
(1) The use of 75 ohm balanced transmission cable, such as RG-108A/U is recommended (although not necessary for short runs).
(2) The output must be terminated in 75ohms.
(3) The length of cable which may be driven is a function of the data rate, the phase distortion of the cable used, and the cable power loss.
Detailed instructions for selecting this interface are given in paragraph 2-17

2-4. Coding/Decoding Options

a. The transmission of digital data over a satellite communications link typically results in random errors in the data sent to the digital user via the PSK modem receiver. These errors are primarily caused by the noise inherent in the satellite link. The performance of a digital communication link is generally measured in terms of the average bit error rate at the digital output of
the link. Average bit error rate is determined by dividing the number of bit errors occuring in a large number of bits by the total number of bits in the sample. The resulting number is the probability of error associated with each bit. For example, if it is determined that 40 errors have occurred in a total of 10,000 bits, the average bit error rate (or bit error probability) is $40 / 10,000$ or 4×10^{-3}.
b. The bit error rate produced by a satellite communications link is a function of the data rate and the signal-to-noise ratio present at the earth terminal output. If a noise bandwidth equal to the bit rate is always used as a reference, the bit error rate as a function of signal-to-noise ratio ($E_{b} N_{0}$) for any data rate can be shown on one curve (fig. 2-7) As shown in figure 2-7. if only differential coding is used, the $\mathrm{E}_{\mathrm{b}} \mathrm{N}_{\mathrm{o}}$ ratio required to obtain a low bit error rate is higher than that required to obtain the same error rate using the external coder in conjunction with the ICF modem. For example, if a digital user requires an error rate equal to or less than $1 \times 10-5 \mathrm{~s}$, the minimum $\mathrm{E}_{\mathrm{b}} \mathrm{N}_{\mathrm{o}}$ ratio needed to support this requirement using only differential coding is +9.8 dB . If an external Coder=Decoder KY-801/GSC (Viterbi coder/decoder) is used, the $\mathrm{E}_{\mathrm{b}} \mathrm{N}_{\mathrm{O}}$ ratio required is reduced by 3.2 dB to +6.6 dB .
c. The requirement for use of error correcting coding equipment is determined by several factors. These factors are the signal-to-noise density ratio (C/KT) provided by the communications link, the implementation loss of the MD-921/G, the data rate, the bit error rate required by the digital user, and the link margin required. The external decoder signals provided by the MD-921/G are required for optimum decoding operation. Therefore, if an external coder/decoder is required, the best system performance will result if the external coding is used in conjunction with the MD921/G rather than the ICF modem. Further information to aid in understanding the requirements and trade-offs involved in applying an external coder/decoder is given in the MD-921/G manual. TM 11-5820-803-12.

TM 11-5820-804-12

Figure 2-7. Theoretical bit error rate for PSK/OCF modem combination with and without external error coding at IFC MODEM.

2-5. Differential Coding

a. The modulation technique used by the PSK modem produces an ambiguity over the communications link. Although the PSK modem receiver detects the modulated data states received from the satellite, it cannot distinguish which state represents
a
ONE
and which state represents a ZERO. The demodulated data process by the PSK modem is as likely to be inverted as not. Differential coding in either the PSK or the ICF modem may be used to resolve this ONE/ZERO ambiguity.
b. The operation of a differential encoder is illustrated in A, figure 2-8. A transition in the output data
is produced for each ONE in the input data. No transitions are produced for the ZERO's in the input data.
c. The operation of a differential decoder is illustrated in B, figure 2-8 which shows the same encoded output sequence developed in A, figure 2-8. If a transition occurs between bit periods, a ONE is produced at the output. If no transition occurs between bit periods, a ZERO is produced. The decoder output sequence is identical to the encoder input shown in A, figure 2-8.
d. The operation of a differential decoder is illustrated in C, figure 2-8 with the encoded output sequence of A figure 2-8 inverted. Again, transitions are decoded as ONE's and no transitions as ZERO's. The decoder output sequence is identical to the encoder input shown in A, figure 2-8.
e. The following considerations apply to the use of differential coding:
(1) Differential coding is generally required, as the PSK modulation technique inherently produces a ONE/ZERO ambiguity over the link.
(2) Differential coding does not affect the symbol rate or the modulation spectrum for random data.
(3) The differential coding/decoding controls, which are located behind the ICF modem front panel [fig. 3-1), must be placed in the OFF position to perform the self-test. The differential coding/decoding controls in the MD-921/G are also behind the front panel and are placed in the ON positions to perform self-test. Therefore, the tasks of both the PSK and the ICF modem operatos will be simplified if the link is configured to use differential coding in the MD-921/G and no differential coding in the ICF modem.

2-6. Coding/Decoding Implementation

a. Operation of the ICF modem with the associated coders and decoders is illustrated in figure 29. Separate switches provide independent selection of the coding and decoding modes of operation These switches are tabulated below:

Switch	Selection
(Transmit) DIFF ENCODE	ON or OFF
TRANSMIT ERROR	NONE or
CODING	EXTERNAL
(Receive) DIFF DECODE	ON or OFF
RECEIVE ERROR	NONE or
CODING	EXTERNAL

b. The DIFF ENCODE and DECODE switches are

Change 2-6.1

(A) DIfFERENTIAL ENCODING

(B) DIFFERENTIAL DECODING

Figure 2-8. Differential encoding and decoding waveshapes.

Figure 2-9. Coder/decoder signal paths.
Change 2 2-8
normally placed in the OFF position.
c. Operation with no error-correcting coding is accomplished by setting the front panel TRANSMIT and RECEIVE ERROR CODING switches to NONE. Operation with an installed, external, error-correcting coder/decoder (KY-801/G) is selectable by the same switches. If an external coder/decoder is required, it should be installed near the ICF modem such that the intermediate cabling does not exceed 10 feet in length. The interconnect cable should use 75 ohm balanced lines (such as RG-108A/U) for best results. All external coder/decoder signals interface via one multipin rear panel connector, J6. Further information on the coder/decoder interface is included in paragraph 2-16. The interface uses line drivers and receivers manufactured by Texas Instruments, part numbers SN7510 and SN75109. The interface signal data/clock phase relationships are shown in figure 2-10. All input and output clock signals may be inverted by setting the appropriate internal switch (para 2-17).
d. The external coder produces two output symbols for each input data bit. Therefore, when transmit error-correcting coding is used, the symbol rate transmitted from the ICF modem is twice the data rate from the digital user.
e. As shown in figure 2-9, the baseband conditioner in the ICF modem transmitter operates directly on the data from the digital user. The ICF modem transmitter INPUT DATA RATE selection switches must always be set to the digital user's data rate.
f. The baseband conditioner in the ICF modem receiver operates on the symbols received from the interconnect facility link. The setting of the SYMBOL RATE switches for the ICF modem receiver depends on whether or not error-correcting coding is used in the ICF installation. If no receive error coding is used, the

SYMBOL RATE switches are set to match the digital user's data rate. If external receive error coding is used, the SYMBOL RATE switches must be set to twice the digital user's data rate.

2-7. Direct Digital Interface

The ICF modem [fig. 2-1]) interfaces with a digital user located near the modem. A direct digital interface via balanced line drivers and receivers is employed. The interface signals, which are available at rear panel site interface connector J 5 , are listed in a and b below.
a. Input Signals.
(1) The standard data input accepts data from the digital user for coding and transmission over the communications link. The ICF modem is capable of synchronizing an internal clock to the data input for use in the coder and transmitter operation (see description of controls and indicators, STD/CLK/ICF switch).
(2) Use of the standard clock input is optional. The ICF modem may be configured to use this input clock to control coding and transmission of the standard data input signal (see description of controls and indicators, STD/CLK/ICF switch). An internal switch in the ICF modem provides the capability of inverting this signal. See paragraph 2-17 for further details on operating this switch.
b. Output Signals. All direct digital outputs may be inverted by internal switches in the ICF modem. (See paragraph 2-17 for further details of switch settings. (1) The internal clock output is derived from an internal reference clock generator. This internally generated clock, which is equal in rate to the setting of the INPUT DATA RATE switches $\pm 0.005 \%$, is provided to the digital user as an optional clock source.

Figure 2-10. External coder/decoder interface phasing.

ICF MODEM

EL 5820-804-12-TM-16
Figure 2-11. Digital user interface.
(2) The standard data output is that data which is received and decoded by the ICF modem receiver.
(3) The standard clock output is a clock signal which is synchronized with the standard data output and is internally regenerated by the ICF modem receiver.
(4) The alternate data and clock outputs are identical to the standard data and clock outputs. The input and output characteristics of the data and clock signals are illustrated in figures 2-12 and 2-13. All the input and output impedances are 75 ohms $\pm 10 \%$. The following factors must be considered in planning the direct digital user interfaces:
(a) The use of 75 -ohm balanced transmission cable, such as RG-108A/U is recommended (although not necessary for short runs).
(b) All direct digital outputs should be terminated with 75 -ohm loads. Unused outputs should be terminated at the ICF modem rear panel connector.
(c) The length of cable which may be driven is a function of the data rate, the phase distortion of the cable used, and the loss of the cable type used.
a. Link Test. The ICF modem provides the capability, with adequate coordination between terminal sites, of measuring the quality of a digital communications link. The transmit link test setup [para (3-6) provides instructions for using the ICF Modem to transmit an internally-generated 2047 bit sequence over the interconnect facility to the satellite link. The receive link test procedure (para 3-7) provides instructions for using the ICF modem to receive this same sequence from the satellite link via the interconnect facility, perform an internal data comparison, and determine the error rate introduced in the link. If necessary, the test may be performed for communications transmitted from a site without disturbing the communications being received, and vice versa.
b. Site Test. If an earth terminal (or the MD$921 / G)$ is configured to receive its own transmissions, the

2-8. Test and Monitor Capabilities

Figure 2-12. Standard data and clock input characteristics (normal polarity).

Figure 2-13. Open circuit standard data and clock output characteristics (normal polarity).
test capabilities of the ICF modem may be used to determine the operational status of the terminal and/or the interconnect facility.
c. Self-Test. The ICF modem contains internal self test circuits which play a major role in fault isolation! of the modem. In addition, this self-test capability provides a means of rapidly verifying modem operation to aid in isolating a communication system malfunction.
d. On-Line Fault Monitoring. The on-line fault indicators provide a means of monitoring various characteristics of the signals being processed by the system. See description of controls and indicators in
para 3-2). The function of these indicators should be reviewed and utilized in the site operating and troubleshooting procedures.

2-9. Special Applications

The ICF input and output interfaces of the modem are compatible with each other. If desired, two ICF modems may be connected as shown in figure 2-14 to provide an interface between two digital users over either a shielded cable, a LOS microwave link or a FO cable link. The coding options may be used in this configuration.

Figure 2-14. Two ICF modems used to interface two digital users.

Section II. SITE AND SHELTER REQUIREMENTS

2-10. Sitting

No specific siting requirements are required since the ICF modem is rack mounted and hardwire connected to the interconnect facility and the direct digital interace.

2-11. Shelter Requirements

The ICF modem is rack mounted in a standard 19-inch equipment rack. The modem weight is 60 pounds The dimensions required for installation are: height 12 1/4
inches, depth 22 inches in a standard 19-inch rack. The equipment is mounted on extendible slide rails. The mounting has the capability of tilting when extended for access to either the top or bottom of the equipment. A minimum of 30 inches clearance is required to extend and service the equipment in the rack. A side view of the ICF modem is shown in figure 2-15 for reference purposes. The air inlet areas are near the front of the unit on the top and bottom and the two exhaust fans are on the rear of the unit. The installation must allow free air flow through these areas.

Section III. SERVICE UPON RECEIPT OF MATERIAL

2-12. Unpacking

The ICF modem is packaged within wooden or cardboard containers and sealed with tape; no unusual unpackaging procedures need be observed. Be careful when removing the unit from the container to prevent damage to the equipment. Retain the packaging material for possible future use.

2-13. Checking Unpacked Equipment

a. Insert the equipment for damage incurred during shipment. If the equipment. has been damaged, report the damage on DD Form 6 (Packaging Improvement

Figure 2-15. ICF modem overall dimensions.

Report) as prescribed in AR 700-58 (para 1-1d).
b. Check the equipment against the packing list shipped with the equipment to see if the shipment is complete. Refer to paragraph 1-10 for listing of ICF modem components. Report all discrepancies in accordance with DISREP instructions for SF 361 (para 1$3 c$). The equipment should be placed in service even though a minor assembly or part that does not affect
proper functioning is missing or damaged..
c. Check to see whether the equipment has been modified. (Equipment which has been modified will have the MWO number near the nomenclature plate.)Check also to see whether all currently applicable MWO's have been applied. (Current MWO's applicable to the equipment are listed in DA PAM 310-7 as applicable.)

Section IV. INSTALLATION INSTRUCTIONS

2-14. Tools, Test Equipment, and Materials Required for Installation

Tools required for installation of ICF modem are contained in Tool Kit, Electronic Equipment TK-105/G (SC $5180-91-\mathrm{CL}-\mathrm{R} 07$). No test equipment or materials are required, other than the test equipment required by higher category of maintenance personnel for installation checkout and the Tektronix 485A oscilloscope required for circuit lineup.

2-15. Installation Instructions

CAUTION

To minimize possibility of personnel injury or equipment damage, two men are required to install or remove the modem.

The ICF Modem is shipped with the chassis half of Jonathan 110 QDP-22-1 (SM-A-571569-2) slides. The mating slide sections must be mounted in the rack prior to modem installation. To install the modem, de- press the retaining catches on the rack section of the slides and push modem into the cabinet. If a cable retractor is
to be installed, it is recommended that a Jonathan CRS25 (SM-A-571570-1) type be used. The electrical connections are given in paragraph 2-16. When dressing the cables, be sure adequate length is provided for pivoting the modem a full 90 degrees in both vertical directions from the normal position.

2-16. External Connections

a. When the ICF modem has been mounted in the equipment rack as described in paragraph 2-15, it must be interconnected into the system. This involves connecting input ac power, site interface, and coder interface at the rear panel of the ICF Modem (fig. 2-16). The reference designations and title of each interconnecting cable are listed in table 2-1.
b. The site and coder interface, J5 and J6, are multiconductor cables. Table ${ }^{2}$-2 lists the signals carried by J 5 while table 2-3 provides similar in- formation for J6.
c. Connections to ground terminals (E2 and E5)
depend on the site. If separate chassis and signal ground buses are provided in the rack, point-to-point connections should be made between the terminals and the respective buses. Connection at the signal ground (E5) is optional. In all cases, the chassis ground terminal (E2) should be connected to the site ground system as a safety precaution.

Table 2-1. ICF Modem Interconnections(fig. 2-16)

Reference	Title	Connector
designation		AC Power
J4	(cable supplied)	
J5	Site Interface	MS3126E24-61P with Glenier 90 0 Qwik-TY

Figure 2-16. ICF modem rear view.

Table 2-2. Site Interface (J5) Signal List

$\begin{gathered} \hline \text { Pin } \\ \text { number } \end{gathered}$	Signal	Description
A	+	Standard data input
B	- $\left.{ }_{\text {Shield }}\right\}$ INSTD	
c		Standard clock input
D	- \} InCLK	
e	Shield	
E	Sig.	Bipolar Nrz input.
F	$\left.\begin{array}{l}\text { Rtn. } \\ \text { Shield }\end{array}\right\}$ ICFIN50	50 ohm, unbala
J	Sig.	Bipolar NRZ input,
K	$\left.\begin{array}{ll} \text { Ret. } \\ \text { Shield } \end{array}\right\} \quad \text { ICFIN75 }$	75 ohm unbalanced
L	+	Internal clock output
M k	Shield $\}$ INTCLK	
AA	EXTALM	Fault Alarm
BB	EXTALM 2	(contact closure)
DD	Sig. $\}$ los out	
EE	Ret. \} LOS OUT	LOS output
N		Standard data output
P	- Shield $\}$ DATOUT	
R		Alternate data output
S	\} ALTOUT	
n	Shield	
U	${ }_{-}^{+} \quad$ CLKOUT	Standard clock output
q	Shield \}	
V		Alternate clock output
w	$\}$ ALTCLK	
s	Shield	
Y	$\left.\begin{array}{l}\text { Sig. } \\ \text { ret. } \\ \text { Lin }\end{array}\right\}$ ICFOU50	Bipolar NRZ output, 50 ohm. unbalanced
t	Shield $\}$ ret	
Z	Sig.	Bipolar NRZ output,
a	Rtn. $\}$ ICFOU75	75 ohm, unbalanced
u	Shield	Bipolar NRZ/NRZ o
b		put,
c	- $\left.{ }_{\text {Shield }}\right\}$ ICFOB75	75 ohm, balanced
v		Bipolar NRZ/NRZ in-
w		put,
x	Shield $\}$ ICFIB75	75 ohm, balanced

Table 2-3. Coder Interface (J6) Signal List

2-17. Switch and Internal Control Settings
The internal switches are located on selected plug-in care assemblies in the ICF modem. The switches are screwdriver-operated and have either two or three switch positions. It is necessary to remove and replace one of the plug-in card assemblies to set the switches, but most of the switches may be operated without removing the card. Refer to figures 1-3 and 1-4 to determine card file locations and reference designations. The reference designations of the plug-in cards are marked on the card files next to each card location. Remove the ICF modem top cover, and set the internal switches as specified in the following paragraphs.
a. Set switch S1 on input interface card assembly A2A1A2A4 (fig. 2-17) for normal polarity (position 1) unless otherwise directed by the digital user (para 2-7 ${ }^{2}$).
b. Set switches S1 and S2 on line driver card assemblies A2A1A1A21, A2A1A1A22, and A2A1A1A23 (fig. 2-18) for normal polarity (position 1) unless otherwise directed by the digital user ttable 2-4 and para 2-7b).

EL 5820-804-12-TM-22

Figure 2-17. Standard clock input inverting switch S1 (viewed from top of input interface card, SM-D-742037, A2A1A2A4)

EL 5820-804-12-TM-23
Figüre 2-18. Line driver polarity inverting switches S1 and S2 (viewed from to of line driver card, SM-D-742053, A2A1A1A21, A2A1A1A22, or A2A1A1A23).

Table 2-4. Direct Digital Output Interface Polarity Selection
Switch Position Function

A2A1A1A21S1 1 Selects normal polarity of internal clock input.
2 Selects inverted polarity of internal clock input.
A2A1A1A21S2 1 Selects normal polarity of NRZ driver output.
2 Selects inverted polarity of NRZ driver output.
A2A1A1A22S1 1 Selects normal polarity of standard data output.
2 Selects inverted polarity of standard data output.
A2A1A1A22S2 1 Selects normal polarity of standard clock output.
2 Selects inverted polarity of standard clock output.
A2A1A1A23S1 1 Selects normal polarity of alternate data output.
2 Selects inverted polarity of alternate data output.
A2A1A1A23S2 1 Selects normal polarity of alternate clock output
2 Selects inverted polarity of alternate clock output.
c. Set switches S1 through S6 on coder interface card assembly A2A1A2A5(fig. 2-19) for normal polarity (position 1) if an external coder/encoder is used in the installation table 2-5 and para 2-6p).

Figure 2-19. External coder interface clock inverting switches S1 through S6 (viewed from top of coder interface card, SM-D-742049, A2A1A2A5).

Table 2-5. External Coder/Decoder Interface Clock Polarity Selection

Switch	Position	on Function
A2A1A2A5S	N	Normal polarity of 2 R clock from external encoder.
	In	Inverted polarity of 2R clock from external encoder.
A2A1A2A5S2	N	Normal polarity of R clock from external decoder.
	2 In	Inverted polarity of R clock from external decoder.
A1A2A5S3	N	Normal polarity of R clock to external encoder
	2 In	Inverted polarity of R clock to external encoder.
A2A2A5S4	N	Normal polarity of 2 R clock to external encoder.
	2 In	Inverted polarity of $2 R$ clock to external encoder.
A2A1A2A5S5	N	Normal polarity of R clock to external decoder.
	2 In	Inverted polarity of R clock to external decoder.
A2A1A2A5S6	N	Normal polarity of 2R clock to external decoder.
	2 In	Inverted polarity of 2R clock to external decoder.

d. For interconnect facility interface via an LOS microwave link, set switch S1 on LOS/ cable driver card assembly A2A1A2A3 fig. 2-20 for a -12 dBm output power level (position 2) at the LOS output. For earth terminal interface via a shielded cable, the final switch setting must be determined by coordination with the MD$921 / \mathrm{G}$ site in accordance with paragraph 2-3. Set the switch (A2AIA2A3SI) initially to position 2(table 2-6 and para 2-2().

Figure 2-20. LOS/cable driver output level selection switch S1 (viewed from top of LOS/cable driver card, SM-D-742081, A2A1A2A3).

Table 2-6. Power Level Selection at LOS/Cable Driver Outputs

Switch Position	Function	
A2A12A3S1	1	Selects $+23 \mathrm{dBm}+3 \mathrm{~dB}$ output power level at cable driver and $+1 \mathrm{dBm}+3 \mathrm{~dB}$ output power level at LOS microwave driver
outputs		output. Selects $+10 \mathrm{dBm}+3 \mathrm{~dB}$ output power level at cable driver and $-12 \mathrm{dBm}+3 \mathrm{~dB}$ output power level at LOS microwave driver output
outputs		Selects $0 \mathrm{dBm}+3 \mathrm{~dB}$ output power level at cable driver outputs and $-22 \mathrm{dBm}+3 \mathrm{~dB}$ output power level at LOS microwave driver output

e. For interconnect facility interface via either a shielded cable or a LOS microwave link, set switches S1 through S4 on LOS/cable receiver and decoder card assembly A2A1A2A1 (fig. 2-21 and 2-22) according to table 2-7 and the installation configuration. Table 2-3 describes the switch functions. Set switches S1and S2 on the NRZ interface card to position 1 (para 2-17f describes this switching).

Figure 2-21. LOS/cable receiver and decoder selection switches S1 through S4 (viewed from component side of LOS/cable receiver decoder card SM-D-742089, A2A1A2A1).

Change 2 2-17

Figure 2-22. LOS/cable receiver and decoder adjustments.
Change 2 2-18

Table 2-7. LOS/Cable Receiver and Decoder Switch Settings

Conditions	Switch settings on A2A1A2A1			
	51	S2	S3	S4
Symbol Rate 19.200	1	2	3	NA
LOS microwave $\quad\left\{\begin{array}{l}\text { kb/s to } 225.00 \mathrm{~kb} / \mathrm{s} \\ \text { Symbol Rate } 225.01\end{array}\right.$	2	2	3	NA
interface \quad kb/s to $1.8000 \mathrm{Mb} / \mathrm{s}$				
Symbol Rate 1.8001	3	2	3	NA
Lob/s to $5.0000 \mathrm{Mb} /$	1	1	1	1
50-ohm \quad, Midrange				
	1	1	2	1
unbalanced cable Short	3	1	2	1
75-ohm Long	1	1	1	2
75-ohm Midrange	1	1	2	2
Short	3	1	2	2
75-ohm Midrange	1	1	2	3
balanced cable Short	3	1	2	3
NOTES				
Long cable > 4000 ft . for RG-217/U				
Midrange cable $=1000$ to 4000 ft . for	r	G-21	7/U	
Short cable < 1000 ft. for RG-217/U				

For classification of other cable types, see paragraph 2-3c

Table 2-8. Operation of LOS/Calble Receiver and Decoder Selection Switches
$\left.\begin{array}{cc}\begin{array}{c}\text { Switch } \\ \text { A2A1A2A1S1 }\end{array} & \begin{array}{c}\text { Position } \\ 1\end{array} \\ \text { Selects input filter for use at input } \\ \text { data rates from } 19.200 \mathrm{~kb} / \mathrm{s} \text { to } \\ 225.00 \mathrm{~kb} / \mathrm{s} \text { if LOD microwave } \\ \text { input is used: selects no first stage } \\ \text { of equilization if any cable input is } \\ \text { used. input filter for use at input }\end{array}\right\}$

Figure 2-22.1 NRZ interface selection switches S1 and S2 (viewed from top of NRZ interface card, SM-d-877791, A2A1A2A2).

NOTE

It is recommended that any spare LOS/cable receiver and decoder cards (SM-D742089) provided to the site also be placed in the modem and aligned prior to placing the modem in service.
a. The initial adjustments are made at a data rate of $5.0000 \mathrm{Mb} / \mathrm{s}$ regardless of the normal system operating rate. Coordinate with the remote PSK Modem site to furnish a $5.0000 \mathrm{Mb} / \mathrm{s}$ data input.
b. Set all vaiable resistors (R2, R10, R12, R14) on the LOS/cable receiver and decoder and fully clockwise.
c. Adjust the oscilloscope for a 100 nsec/cm sweep and perform one of the following alinements depending on the site configuration:
(1) For an LOS input, use an oscilloscope to monitor TP1 on the LOS/cable receiver and decoder card (A2AIA2AI) and adjust R2 for an amplitude of 2.4 V p-p. Then monitor TP2 and, if necessary, readjust R2 for an amplitude of 1.2 V p-p.
(2) For a short cable input, use an oscilloscope to monitor TP1 on the LOS/cable receiver and decoder card (A2AIA2AI). If the amplitude is greater than 2.0 V p-p., adjust R12 (and adjust R10 equally if the balanced input is used) to obtain an amplitude of 2.0 V p-p. After this adjustment, or if the initial amplitude was less than or equal to $2.0 \mathrm{~V} p-\mathrm{p}$, adjust R2 to obtain an amplitude of $2.4 \mathrm{~V} p-\mathrm{p}$. Then monitor TP2 and readjust R2 if necessary to obtain an amplitude of $1.2 \mathrm{~V} \mathrm{p}-\mathrm{p}$.
(3) For a midrange cable input, use an oscilloscope to monitor TP1 on the LOS/cable receiver and decoder card (A2AIA2AI). If the amplitude is less than 2.4 V p-p, adjust R 2 to obtain an amplitude of 2.4 V p-p. If the amplitude is greater than 2.4 V p-p. proceed even if the signal obviously causes saturation of the amplifier. Adjust the equalization by turning R12 (and adjust R10 equally if the balanced input is used) counterclockwise until a signal similar to B, figure 2-23 is observed. Because the amplitude will decrease, it may be necessary to increase the oscilloscope gain to observe this adjustment. Then adjust R2 to obtain an amplitude of 2.4 V p-p.

Monitor TP2 and, if necessary, readjust R2 to obtain n amplitude of $1.2 \mathrm{~V} \mathrm{p}-\mathrm{p}$.
(4) For a long cable input, use an oscilloscope to monitor TP1 on the LOS/cable receiver and decoder card (A2AIA2AI). If the amplitude is less than $2.4 \mathrm{~V} p-p$, adjust R 2 to obtain an amplitude of 2.4 V p-p. If he amplitude is greater than $2.4 \mathrm{~V} p-\mathrm{p}$., proceed even f the signal obviously causes saturation of the amplifier. Adjust the first stage of equalization by turning t12 (and adjust'R10 equally if the balanced input is used) counterclockwise until a signal similar to A, figure 2-23 is observed. Because the amplitude will increase, it may be necessary to increase the oscilloscope gain to observe this adjustment. Then, adjust L2 to provide the maximum amplitude obtainable without causing saturation of the amplifier. Monitor TP2 and adjust the second stage of equalization by turning R14 counterclockwise until either a waveform similar to B, figure 2-23s obtained or the amplitude decreases to 1.2 V p-p. If necessary, readjust R 2 to obtain an amplitude of $1.2 \mathrm{~V} p-\mathrm{p}$.
d. Coordinate with the PSK modem site to return the operational data rate.
e. Monitor TP2 and, if necessary, readjust R2 to obtain an amplitude of $1.2 \mathrm{~V} p-\mathrm{p}$.

Figure 2-23. Equalization waveforms.

CHAPTER 3

OPERATING INSTRUCTIONS

Section I. CONTROLS AND INDICATORS

3-1. Damage from Improper Settings

To avoid damage to internal circuits of the ICF modem, be sure that the POWER switch is in the off position when prime power is applied.

3-2. Operator Controls, Indicators, and Connectors

The operator controls, indicators, and connectors are illustrated in figure 3-1 and described in table 3-1.

EL 5820-804-12-TM-29
Figure 3-1. ICF modem, operator controls.

Table 3-1. Operator Controls, Indicators, and Connectors

Control, indicators, or connectors	Function	Controls, indicators, or connectors	Function
FAULT section ALARM		SOURCE, three position rotary switch-	uncoded depending on the TRANSMIT ERROR CODING and the
RESET/OFF/ON,	RESET-Resets fault detection cir-	Continued	DIFF ENCODE switch settings, is
three position	cuits, and tests FAULT indi-		transmitted to the satellite com-
toggle switch	cators and audible alarm.		nications terminal. Digital
	OFF-Disables audible alarm		user communications are inter-
	(except for overtemperature		rupted on the transmit portion
	condition).		of the link.
	ON-Audible alarm is enabled.		TEST-Connects the internal 2047
Audible alarm	Provides audible signal when a fault or overtemperature condition		bit sequence generator output to the transmitter baseband condi-
	occurs.		tioner input. In this mode, the
TEMPERATURE	Illuminates when an over-		2047 bit sequence, coded or
indicator			uncoded
temperature conditio	n exists.		depending on the TRANSMIT
SECTION			ERROR CODING and DIFF
TRANSMIT indicator	Illuminates when a fault occurs in		ENCODE switch settings, is
	the transmit section.		transmitted to the
RECEIVE indicator	Illuminates when a fault occurs in		satellite communications link.
	the receiver section.		The selected receiver is
NOTE			connected to a test signal
The remaining FAULT Section	indicators flash on and		from its companion drivers.
off to indicate an existing faul	but remain illuminated		The TEST switch is also
after fault is cleared. These in	dicators are then extin-		enabled. Digital user com-
guished when RESET/OFFION	switch is set to RESET.		munications are interrupted on
TRANSMIT			both the transmit and receive
BIT SYNC indicator	Indicates when a loss of transmitter		portions of the link. and the data sent to the digital user will
RECEIVE			data sent to the digital user will vary depending on the TRANS-
BIT SYNC indicator	Indicates when a loss of receiver bit synchronization occurs.		MIT section, RECEIVE section, and TEST switch settings.
TRANSMIT section		MONITOR section	
INPUT DATA RATE,	Selects transmit data rate and in-	MONITOR meter	Specific function of meter is depend
thumbwheel switch, six	ternal clock output rate from		ent on position of METER
sections. Section one-9	19.200 kbs to 5.0000 Mbh in		switch.
positions, sections	three bands:	METER, 8 position	OFF-Disables meter
two through five-10	Band 1-19.200 kb/s to 99.999	rotary switch	+5-Measures internal + 5 V dc
positions and section	kb/s		supply voltage
six-3 positions.	Band 2-100.00 kb/s to 999.99		-5-Measures internal -5V dc
	kbs		supply voltage
	Band 3-1.0000 Mb/s to 5.0000		+15-Measures internal + 15 V dc
	Mb/s		supply voltage
ERROR CODING, two position toggle switch	NONE-elects a straight through path without error correction	-	-15-Measures internal - 15 V dc supply voltage
	encoding.		XMT SYNTH-Checks phase detec-
	EXTERNAL-elects an external		tor output voltage in transmit
	encoder.		frequency synthesizer.
SOURCE, three position	OPERATE-Connects the digital		RCV SYNTH-Checks phase detec-
rotary switch	user's output data (which is se-		tor output voltage in receive
	lected by the STD/CLKACF		frequency synthesizer.
	switch) to the transmitter		ERROR COUNT-Displays voltage
	baeband conditioner		proportional to error rate
	input. Also disables the internal		measured by internal error com-
	2047 bit sequence generator. In		parator. Scale factor is error rate
	this mode, the digital user's out-		(percent) = meter reading - 4.
	put data, coded or uncoded depend-		Function displayed depends on
	ing on the TRANSMIT ERROR		TRANSMIT SOURCE and TEST
	CODING and the DIFF ENCODE		switch settings.
	switch settings, is transmitted		1. With the TRANSMIT
	to the satellite communications		SOURCE switch in the OPER-
	terminal.		ATE or LINK positions, the
	LINK-Connects the internal 2047		error comparator monitors the
	bit sequence generator output to		standard data and clock outputs
	the transmitter baseband condi-		of the receiver. If the 2047 bit se-
	tioner input. In this mode, the		quence (coded or uncoded) is
	2047 bit sequence, coded or		received from the communi-

Change 2 3-2

Table 3-1. Operator Controls, Indicators, and Connectors-continued

Controls, indicators, or connectors
MONITOR section-Continued
METER, 8 position rotary switch - Continued

DATA A and B indicators

CLOCK A and B indicators
TEST, five position rotary switch

MANUAL/OFF/AUTO three position toggle switch

Function
cations link and the appropriate decoding is selected, the error comparator measures the bit error rate provided by the receive link.
2. With the TRANSMIT

SOURCE switch in the TEST position, the error rate measurement depends on the TEST switch h setting.
Indicators illuminate to indicate the logic state present at internal error comparator date input.

1. DATA A on indicates a logic 1
2. DATA B on indicates a logic 0 The date monitored at the internal error comparator input is de-
pendent on the TRANSMIT
SOURCE, METER, and TEST
switch settings.
Same as DATA indicators except
that clock is monitored
Enabled by placing the TRANSMIT
SOURCE switch in the TEST position, which also:
3. Connects the internal 2047 bit sequence generator to the transmitter baseband conditioner input.
4. Connects the LOS/cable receiver input to the LOSI cable driver output test signal.
The TEST switch selects the data and clock input to the internal error comparator.
Position 1-Connects the internal error comparator to monitor the internal 2047 bit sequence generator outputs.
Position 2-nnects the interna error comparator to monitor the transmit bit synchronizer outputs.
Position 3-nnects the interna error comparator to monitor the receive bit synchronizer outputs.
Position 4-nnects the interna error comparator to monitor the standard data and clock outputs (end-to-end test)
Position 5Connects the internal error comparator to monitor the alternate data and clock outputs.
MANUAL-Causes internal error comparator to sample input data and synchronize comparator circuits.

Controls, indicators, or connectors,
MANUALOFF/AUTO, three position toggle switch-Continued

ERROR connector

SYNC connector

CLOCK connector

RECEIVE section
SYMBOL RATE thumbwheel switch

RROR CODING, two position toggle switch

POWER section
5 AMP fuse
SPARE fuse
Indicator
ON toggle switch
Controls behind front panel STD/CLK/ICF switch

DIFF ENCODE, two position toggle switch

DIFF DECODE, two position toggle switch

Function
OFF-Disables automatic mode.
AUTO-Activates automatic resynchronization of internal error comparator when error rate measurement exceeds 25 percent.
Provides an output pulse from the internal error comparator for each bit error detected.
Provides a sync pulse from the internal 2047 bit sequence generator (1/2047 of INPUT DATE RATE switch setting).
Provides the clock signal from the internal error comparator.

Selects receive symbol rate of 19.200 kb/s to 5.0000 Mb / s in three bands: Band 1-19.200 Kb/s to 99.999 Kb/s
Band 2-100.00 Kb/s to 999.99 Kb/s
Band $3-1.0000 \mathrm{Mb} / \mathrm{s}$ to 5.0000 Mb/s
NONE-Selects a straight through path without error correction decoding.
EXTERNAL elects an external decoder.

Overload protection.
Spare 5 amp fuse.
Illuminates when power is applied.
ON-Applies ac power to the ICF Modem.

Enabled by placing the TRANSMIT SOURCE switch in the OPERATE position. Selects whether transmitter timing is derived from the input data or an input clock.
STD-Select the direct digital (standard) data input for transmission and timing derivation.
CLK Selects the direct digital (standard)data input for transmission and the direct digital clock input for timing derivation.
ICF-Not used.
ON-Activates differential encoder in transmitter.
OFF-Disables differential encoder in transmitter.
ON-Activates differential decoder in receiver.
OFF-Disables differential decoder in receiver.

Section II. OPERATION UNDER USUAL CONDITIONS

3-3. General

The ICF modem may be used for self-testing, linktesting or duplex digital communications. The required procedures are included in this section. Before acing the modem into operation, the site requirements must be reviewed, and the normal operational switch settings must be entered pertable 3-2. purposes of the various modes are briefly described in following paragraphs.
a. Preliminary Starting Procedures. The preliminary starting procedure (para 3-4) prepares the modem for operation.
b. Self-Test. The self-test procedure (para 3-5) is performed to ensure the modem is operating properly. self-test is performed as a part of the routine modem maintenance cycle, the preliminary starting procedure, or upon request to aid in locating a communications system malfunction.
c. Transmit Link Test. The transmit link test Sara $3-6$) is performed to determine the quality of the data received at the remote end of the link. This test is performed as a part of the routine site maintenance procedure, the site procedure for establishing a communications link, or upon request to aid in locating a communications system malfunction.

Table 3-2. Operational Switch Settings

Table 3-2. Operational Switch Settings -continued

Control section	Switch	Setting	Notes
Behind front	STD/CLK/ICF	-	per site requirements per site requirements Per site requirements

d. Receive Link Test. The receive link test (para $\mathrm{B}-7$) is performed to determine the quality of the data received from the remote end of the link. This test is performed as a part of the routine site maintenance procedure, the site procedure for establishing a communications link, or upon request to aid in locating a communications system malfunction. Performing this test requires the PSK (or ICF) modem at the remote end of the satellite communications link to be set up or a transmit link test. This is generally accomplished either by direct request or by prior scheduling. Also, h earth terminal transmit/receive equipment may be arranged so that its own transmissions are received.
e. Normal Duplex Link Communications. Duplex link communications (para 3-8) is the normal mode of operation in which the modem provides the required interface between an earth terminal and a digital user.

3-4. Preliminary Starting Procedure

a. Prior to applying power to the ICF modem, set he following controls as indicated.

Control	Position
TRANSMIT SOURCE	LINK
TRANSMIT ERROR CODING	Normal operational setting
	Itable 3-2 Normal operational setting INPUT DATA RATE table 3-2

ALARM OFF
b. Set the POWER switch to the ON position, and allow 30 minutes for warmup.

NOTE

If mission requirements do not permit a proper warmup period, the modem can be operated (with possible degraded performance) immediately after application of power.
c. Perform a self-test pe paragraph 3-5

3-5. Self-Test

CAUTION

Performing self-test on a modem while the system is operating interrupts digital user communications on both the transmit and receive links.
a. If modem is nonoperating, perform the preliminary starting procedure (para 3-4).
b. Initiate the test by changing the modem switch settings as required to correspond to table 3-3.

Table 3-3. Self-Test Initial Switch Settings

Control section	Switch	Position
FAULT	ALARM	OFF
TRANS-	INPUT DATA RATE	Same as operational INPUT
MIT		DATA RATE [table 3-2]
	ERROR CODING	NONE
	SOURCE	TEST
MONITOR	TEST	1
	METER	OFF
	MANUAL/OFF/AUTO	AUTO
RECEIVE	SYMBOL RATE	Same as operational INPUT
		DATA RATE [table 3-2
	ERROR CODING	NONE

Table 3-3. Self-Test Initial Switch Setting-continued

Control section	Switch	Position
POWER	ON/off	ON
	STD/CLKIICF	Same as
	operational setting	
Behind upper front panel	DIFF ENCODE	OFF
	Diff decode	OFF

c. Perform the self-test in accordance with table 34 following instructions:
(1) In the sequence shown on the table, set each front panel switch indicated in the first column to the corresponding setting(s) indicated in the second column.
(2) each switch setting, observe the indicator(s) listed in the third column, and verify the results required by the fourth column.

Table 3-4. Self-Test Procedure

d. If operational INPUT DATA RATE (table 3-2) is not the same as operational SYMBOL RATE, set both switch groups to the operational SYMBOL RATE and repeat procedures o table 3-4
e. If either the DIFF ENCODE or DIFF DECODE switch is operationally set to ON, set both these switches to ON and verify that MONITOR meter indi-
cates O and that DATA and CLOCK indicators are illuminated.
f. If both ERROR CODING switches are operationally set to NONE (table 3-2) omit procedures of table 3-5.
g. If the RECEIVE ERROR CODING switch is operationally set to EXTERNAL, set both ERROR.

CODING switches to that position, set SYMBOL RATE switches to operational positions, and set INPUT DATA RATE switches to one-half the operational SYMBOL RATE. Then perform the coder test in accordance with table 3-5.
h. If the TRANSMIT ERROR CODING switch is operationally set to EXTERNAL, set both ERROR CODING switches to that position, set INPUT DATA RATE switches to operational positions, and set SYMBOL RATE switches to twice the INPUT DATA RATE. Then perform (or repeat) the coder test in accordance with table 3-5.

Table 3-5. Coder/Decoder Test Procedure

(Control section)	Setting	Indicator	Normal indicator	Corrective action
switch				
(MONITOR)	5			
(MONITOR)	ERROR	Meter	2	OM
		All MONITOR indicators	Illuminated	OM
$\begin{aligned} & \text { FAULT } \\ & \text { ALARM } \end{aligned}$	RESET (momentary)	AS FAULT indicators	Extinguished	OM

i. If at any point in the self-test or coder test the required indication does not appear, perform corrective action or refer the problem to organizational maintenance as indicated by an OM in the Corrective action column.

3-6. Transmit Link Test

a. The following modem setup procedure allows the terminal at the other end of the satellite communications link to perform a receive link test para 3-7. See paragraph 3-3 c for the transmit link test requirements.

CAUTION

Performing this test interrupts digital user communication on the transmit link.
b. If modem is nonoperating, perform the preliminary starting procedure (para 3-4).
c. Set the following controls as indicated:

Control

TRANSMITSOURCE TRANSMIT ERROR CODING
INPUT DATA RATE
DIFF ENCODE
ALARM
d. Momentarily depress the fault ALARM switch to

RESET. Verify the TRANSMIT SECTION and the TRANSMIT BIT SYNCHRONIZER fault indicators are extinguished when the switch is released.
e. Maintain control settings for time period required b site procedures or schedule.

3-7. Receive Link Test Procedure

a. See paragraph 3-3 d for receive link test requirements.
b. If the modem is nonoperating, perform the preliminary starting procedure (para 3-4).
c. If the transmit communications link is in normal operation, retain the TRANSMIT SOURCE switch in the OPERATE position; otherwise, set the TRANSMIT SOURCE switch to the LINK position.
d. Set the following controls as indicated::

Control SRECEIVE ERROR Normal operational setting (table

CODING SYMBOL RATE

Normal operational setting table 3-2)
DIFF DECODE Normal operational setting (table

METER 3-2

MANUAL/OFF/AUTO AULTO Monitor)
e. When the modem at the other end of the communications link has been set up for the transmit link test (para 3-6), determine the error rate of the link by one of the three following methods and verify the error rate is within the requirements of the site procedures.
(1) Observe the meter indication.

NOTE
Error Rate (percent) $=$ meter reading $\div 4$
(2) Connect an electronic frequency counter to the ERROR connector on the front panel. Adjust the counter interval as required to make the measurement.

Error rate $=$| NOTE |
| :---: |
| error count |

Data rate $=$| data rate x counter interval |
| :--- |
| (second) |

ERMBOL RATE if RECEIVE
is set to NONE.
Data rate $=$ SYMBOL RATE - 2 if
RECEIVE ERROR CODING
switch is set to EXTERNAL.
(3) Couple the 7002 error rate counter to the ICF modem by connecting the ERROR connector on the ICF modem front panel to the ERRORS connector on the error rate counter front panel, and connecting the CLOCK connector on the ICF modem front panel to the CLOCK connector on the error rate counter front panel. On the error rate counter, place the START.
switch o the AULTO BLANK position, the STOP switch to the ERROR 10^{3} position, and turn the POWER/DISPLAY control fully clockwise. The ERROR COUNT display of the error rate counter provides a direct readout of the bit error rate.

NOTE

If an OVERFLOW indication instead of a valid bit error rate appears on the ERROR COUNT display, set the STOP switch to a lesser setting and repeat the error rate measurement

3-8. Normal Duplex Link Communications Procedures

a. If modem is nonoperating perform the preliminary starting procedure (para 3-4.
b. Set the ALARM switch OFF and other modem controls pertable 3-2
c. Momentarily depress the FAULT switch to RESET. Verify all FAULT indicators are OFF when switch is released.
d. Set the ALARM switch pe table 3-2

3-9. Stopping Procedure for Standby Condition

If the modem must be maintained in a standby condition (POWER ON), set SOURCE switch to LINK position to modulate the earth terminal output carrier. This operation reduces the possibility of intermodulation products interfering with other satellite users.

3-10. Stopping Procedure for Shutdown

The modem is switched to shutdown condition by setting the POWER ON switch to the off (downward) position.

CHAPTER 4

OPERATOR/CREW MAINTENANCE INSTRUCTIONS

Section I. OPERATOR/CREW TOOLS AND EQUIPMENT

4-1. Scope of Operator/Crew Maintenance

The maintenance duties assigned to operator/crew for the ICF modem consist of cleaning, inspection, checks and services, and replacement of fuse, indicators and lenses.

4-2. Test Equipment and Material Required For Operator/Crew Maintenance

Material required for cleaning are lint-free cleaning cloths, a soft-bristle brush, and trichloroethane. No test equipment is required for system tests.

Section II. PREVENTIVE MAINTENANCE CHECKS AND SERVICES

4-3. General

To insure that the ICF modem is always ready for operation, it must be inspected systematically so that defects may be discovered and corrected before they result in serious damage or failure. The necessary preventive maintenance checks and services to be performed while the modem is not operating are listed and described in table 4-1. Preventive maintenance procedures to be performed while the modem is operating are listed in able 4-2. Defects discovered during operation of the unit will be noted for future corrections to be made as soon as operation has ceased. Stop operation immediately if a deficiency is noted during operation which would damage the equipment. Record all deficiencies, together with the corrective action taken, on DA form 2404 (TM38-750).

NOTE

If the equipment must be kept in continuous operation, check and service only those items that can be accomplished without disturbing operation. As soon as the equipment can be shut down, perform all the required checks and services before returning the equipment to operation.

Table 4-1. Preventive Maintenance Checks and Services-Weekly Schedule (Modem Not Operating)

Switch no.	Indicator Required	Procedure	Reference
1	Rack and modem	Check for com- pleteness and and general con- dition	Refer to organizational maintenance if parts are damaged or missing. See paragraph 4-5 for
2	Indicators and switches cleaning instructions. Replace defective indica- tor lamps or lenses refer to organizational maintenance if switches are damaged		
Check to see that switches (except for POWER/ON switch) operate freely Thumb wheel switches	Check to see that appear switches operate damaged, refer to frganizational maintenance		

Table 4-1. Preventive Maintenance Checks and Services- Weekly Schedule (Modem Not Operating)continued

Switch no.	Indicator Required	Procedure	Reference
4	Meter	Check to see that meter front is clean and undamaged.	S\& paragraph 4-4 for cleaning instructions. Refer to organizational maintenance if meter appears damaged.
5	Blowers	Perform the preliminary starting procedure (para 3-4)and verify that blowers are operating.	Refer to organizational maintenance if blowers do not operate.
6	Modem operation	Perform the selftest para 3-5).	Refer to organizational maintenance as indicated by the self-test tables.

Table 4-2. Preventive Maintenance Checks and Services -
Weekly Schedule (Modem Operating)

Switch no.	Indicator Required	Procedure	Reference
1	Rack and modem	Inspect for completeness and general condition.	Refer to organizational maintenance if parts are damaged or missing.
2	Indicators and blowers	Check to see that the POWER ON, DATA, and CLOCK indicators are illuminated. Check that blowers are operating.	Replace defective indicators or lenses. Refer to organizational maintenance if items are damaged or not operating.
3	Meter	Check to see that meter front is clean and undamaged.	See paragraph 4-5 for cleaning instructions. Refer to organizational maintenance if meter appears damaged.

Table 4-2. Preventive Maintenance Checks and Services-Weekly Schedule Modem Opera ting)-continued

Switch	Indicator	Procedure	Reference
Setting	Required	Operation	Perform opera- tional checks (para 4-4)
Refer to organizational maintenance if required indications are not present.			

4-4. Operational Checks

The following procedure, when properly performed, does not interrupt digital traffic. Do not disturb any control settings except as directed in the procedure. In the sequence shown in table 4-3, set the front panel switch listed in the first column to each position listed in the second column. For each switch position, observe the indicator(s) listed in the third column, and verify proper operation as specified in the fourth column. If the required indication is not obtained, perform the corrective action or refer the problem to higher category of maintenance as indicated in the final column. Upon conclusion of the test, return the ALARM and METER switches to their normal operating positions.

Table 4-3. Operational Checks

Switch	Setting	indicator	Required indication	Corrective action
ALARM	Hold in	POWER ON	Illuminated	Replace lamp
		ALL	Illuminated	Replace lamp
		MONITOR		
		indicators		
		All		
RESET/OFF/ON	RESET	FAULT	Illuminated	Replace lamp
		indicators		
		Audible		
		alarm	Tone	Organizational

Table4-3. Operational Checks-continued

$\begin{array}{l}\text { Switch } \\ \text { ALARM }\end{array}$	$\begin{array}{l}\text { Setting } \\ \text { Release to }\end{array}$	$\begin{array}{l}\text { Indicator } \\ \text { All } \\ \text { FAULT }\end{array}$	$\begin{array}{l}\text { Required } \\ \text { indication } \\ \text { Extin- } \\ \text { guished }\end{array}$	$\begin{array}{l}\text { Corrective } \\ \text { action } \\ \text { Organizational } \\ \text { maintenance }\end{array}$
$\begin{array}{l}\text { RESET/OFF/ } \\ \text { ON }\end{array}$	OFF	$\begin{array}{l}\text { indicators } \\ \text { Audible } \\ \text { alarm }\end{array}$	No tone	$\begin{array}{l}\text { Organizational } \\ \text { maintenance } \\ \text { Organizational } \\ \text { mETER } \\ \text { (function } \\ \text { select } \\ \text { switch) }\end{array}$
maintenance				

4-5. Cleaning

a. Remove dust and loose dirt with a clean soft lint free cloth.
b. Remove dust, dirt, and other foreign matter from all plugs and jacks with a soft bristle brush.

WARNING

The fumes of trichloroethane are toxic. Provide thorough ventilation whenever used. DO NOT use near an open flame. Trichloroethane is not flammable, but exposure of the fumes to an open flame converts the fumes to highly toxic, dangerous gases.
c. Remove grease, fungus, and ground in dirt. with a lint-free cloth dampened with trichloroethane.

CHAPTER 5

ORGANIZATIONAL MAINTENANCE INSTRUCTIONS

Section I. ORGANIZATIONAL TOOLS AND EQUIPMENT

5-1. Scope of Organizational Maintenance

The maintenance duties assigned to organizational maintenance personnel for the ICF modem consist of inspection, testing, and replacement of fuse and lamp sockets, switches, alarm buzzer, and meter. The organization maintenance personnel will also rerun operator tests that indicated malfunctions to verify need for referral to direct support maintenance.

5-2. Test Equipment and Material Required for Organizational Maintenance Services

The tools required for organizational maintenance are contained in Tool Kit, Electronic Equipment TK-105/G. A Simpson 270 Multimeter is required for voltage age and continuity checks. The Fluke 8000A-01 Digital Voltmeter, Protolab 7920 card puller, and SM-D-759649 card extender are required for power supply adjustment.

Section II. ORGANIZATIONAL MAINTENANCE PREVENTIVE MAINTENANCE CHECKS AND SERVICES

5-3. Preventive Maintenance Checks and Services (PMCS)

Preventive Maintenance Checks and Services (PMCS) are essential to the operation of the ICF modem and to prevent possible damage that might occur through neglect or failure to observe warning symptoms in a timely manner.

- Always keep in mind and observe WARNING S and CAUTIONS contained in this technical manual and plates installed on the equipment that are associated with the functions you are about to perform. Perform our monthly PMCS from table 5-1
- If your equipment fails to operate, troubleshoot within your capabilities. Report any deficiencies as appropriate using the proper form as specified in DA Pam 738-750.

NOTE

Within designated intervals these checks are to co be performed in the order listed.

If the equipment must be kept in continuous operation, check and service only those items that can be checked and serviced without disturbing operation. Make the checks and services when the equipment can be shut down.

Table 5-1. Preventive Maintenance Checks and Services (PMCS)

Items	to be inspected	
1	Procedures check and have repaired or adjusted as necessary	
Thumbwheel	Operate each position of switches switches least five times to effect a self- cleaning wiping action of internal contacts. Dirty switches are suspected. Refer toparagraph 5-1il1.	

5-4. Painting Instructions

a. The organizational maintenance repainting responsibility is limited to paint touchup of minor control panel scratches. No refinishing is required.

CAUTION

Do not apply paint to any area of the modem except the control panel front and edges.
b. When retouching is required, the paint type required for use is No. P515E per MIL-F-14072. Refer to TB 43-0118 Field Instructions for Painting and Preserving Communications-Electronics Equipment.

Change 3 5-1

Section III. ORGANIZATIONAL MAINTENANCE TROUBLESHOOT!NG AND REPAIR

5-5. Troubleshooting

Organizational maintenance troubleshooting of the modem is required when as apparent malfunction equipment damage is reported by the operation crew. Organizational maintenance troubleshooting actions are detailed in table 5-2. Any trouble that is beyond the scope of organizational maintenance.

Table 5-2. Troubleshooting
Malfunction Probable cause Corrective action

1. Equipment damage. Mishandling. Paragraph 5-5
2. Required indicator does a. Operator error.

Paragraph 5-6
not illuminate during self-test (indicator replacement does not remedy).
b. Faulty wiring
c. Damaged
indicator
socket.

Table 5-2. Troubleshooting-continued Malfunction
3. Fault alarm does not sound during self-test.
4. Meter indicates Meter defective. Paragraph 5-6 incorrectly during self-test.
5. Blower(s) not operating. Blower defective. Paragraph 5-7
6. Other malfunctions. a. Cards or Paragraph 5-8 connectors not properly seated. b. Power supply ou Paragraph
of adjustment.
c. Thumbwheel Paragraph 5-
switch assembly defective.

Section IV. MAINTENANCE

WARNING

115 V ac is present within the ICF modem. Perform all possible maintenance with power removed. If necessary to perform, operations with covers removed and power on, be extremely careful to avoid contact with high voltage.

5-6. Equipment Damage Repair

Organizational repair is limited to replacement of fuse holders, indicator sockets, meter, and switches except for A1S5. If any of these items are damaged, remove cover, tag leads, and replace the damaged component.
Reconnect leads, reinstall cover, and perform self-test (para 3-5) to verify operability. Refer to higher category of maintenance any damaged items the repair which is beyond the scope of organizational maintenance.

NOTE

Most maintenance actions involving front panel components require that power supply 2PS1 be removed to facilitate access to the components. Refer to paragraph 5-12 for power supply removal and reinstallation procedures.

5-7. Self-Test Failure

If the modem fails to provide a specified indication during self-test, carefully repeat the test in its entirety to sure that the apparent failure was not caused by operator error. If an indicator fails to illuminate when specified and lamp replacement does not effect a remedy, remove cover and check for loose or broken or damaged socket. Repair or replace as required.

If the fault alarm fails to sound when specified, recover and connect VOM to verify that +5 V dc is present at positive lead to alarm buzzer. If voltage is present short negative lead of buzzer to ground. If buzzer does not then sound, replace the alarm buzzer. If meter operation is erratic or consistently reads high or low, replace meter. If the above maintenance actions fail to correct the malfunction or if the self-test failure symptom is other than those listed, perform procedures of paragraphs 5-9 through 5-11. If failure symptoms remain, refer the malfunction to direct support.

5-8. Blower(s) Not Operating

If both blowers are not operating, check for 115 V ac between terminals E7 and E8. If voltage is not present, refer to direct support. If a single blower is not operating, omit the voltage check and replace the inoperative blower.

5-9. Card or Connectors Not Properly Seated

Remove power and remove top cover. Inspect that all cards are flush with one another in the files. Check to see that each card is properly emplaced in its card guides. Inspect all connectors to insure that they are properly seated.

5-10. Power Supply Out of Adjustment

a. Remove power and remove the top and bottom cover of the modem.
b. Remove the alarm circuits card, A2A1A2A10 and install the card extender in its place.
c. Using the digital voltmeter to monitor the ap-

Figure 5-1. Typical PC card pin locations.
propriate connector pin (fig. 5-1), adjust each power supply (A2PS1) voltage as required to obtain outputs within the limits of table 5-2. The voltage adjustments are located within the power supply, and each access hole is clearly marked to indicate the voltage controlled by the adjustment.

NOTE

All voltage returned to A2E2.
Table 5-3. Power Supply Measurements

Voltage	Limits	Connector pin
+5 V	+4.95 to +5.05 V	A2A1A2A9-47
-5 V	-4.95 to -5.05 V	A2A1A2A9-48
+15 V	+14.98 to +15.02 V	A2A1A2A9-13
-15 V	-14.98 to -15.02 V	A2A1A2A9-15

5-11. Thumbwheel Switch Assembly Defective

If trouble symptoms indicate that modem is not operating at selected data or symbol rates, a continuity check of the thumbwheel switch assemblies fig. 5-2 per table 5-4 will determine whether these assemblies are functioning properly. If continuity per the table is not obtained, replace the defective switch assembly. If continuity per the table is established and trouble symptom remains, refer to higher category of maintenance.
a. Remove power and modem top cover.
b. Check switch continuity in each dial position in accordance with table 5-4

Table 5-4. Thumbwheel Switch, Truth Tables Switch S1
common $X(\cdot), Y(0)$
Switches S2 through S5

Switch S1 Common $X(\cdot), Y(0)$						Switches S2 through S5 Common $X(\cdot) Y(0)$			
connected to terminal						connected to terminal			
Dial reading									
	1	2	3	4		1	2	3	4
1	0	0	0	-	0	-	0	0	-
2	-	-	-	0	1	0	0	0	-
3	0	-	-	0	2	-	-	-	0
4	-	0	-	$0 \cdot$	3	0	-	-	0
5	0	0	-	0	4	-	0	-	0
6	-	-	0	0	5	0	0	-	0
7	0	-	0	0	6	-	-	0	0
8	-	0	0	0	7	0	-	0	0
9	0	0	0	0	8	-	0	0	0
					9	0	0	0	0

Switch S6

Dial reading	Common A, B connected to terminal	
	A	B
KB / S XX.XXX	A 0	B 0
$\mathrm{~KB} / \mathrm{S} \mathrm{XXX.XX}$		
$\mathrm{MB} / \mathrm{S} \mathrm{X.XXXX}$	A 1	B 1

5-12. Power Supply Removal and Reinstallation Procedures

a. With modem top cover removed, disconnect the ac power cable PS1J1 and the dc connector to the top file. Remove four phillips head screws (A,fig.5-3). Remove bottom cover and remove two lower phillips head screws from each side near bottom of the modem
(B, fig 5-3) Extract power supply with attached mounting brackets from bottom of modem.
b. To reinstall the supply, reverse the procedures
of a above. Leave screws untightened and insure that the mounting brackets are flush with the bottom sides of
the modem; then tighten screws.

Figure 5-2. Thumbwheel switch assembly terminal boards.

Figure 5-3. Power supply removal and installation
5-5/5-6 (Blank)

APPENDIX A

REFERENCES

DA Pam 25-30
DA Pam 738-750
TM 11-5820-803-12
TM 11-5820-804-20P
TM 740-90-1
TM 750-244-2

Consolidated Index of Army Publications and Blank Forms.
The Army Maintenance Management System (TAMMS).
Operator and Organizational Maintenance Manual for Modem, Digital Data MD-921/G.
Organizational Maintenance Repair Parts and Special Tools List for Modem, Digital Data MD-920A/G.
Administrative Storage of Equipment.
Procedures for Destruction of Electronics Meteriel to Prevent Enemy Use (Electronics Command.
*U.S. GOVERNMENT PRINTING OFFICE: 1995-388-421/41154

Change 3 A-1/(A-2 blank)

APPENDIX C

MAINTENANCE ALLOCATION

Section I. INTRODUCTION

C-1. General

This appendix provides a summary of the maintenance operations for Modem, Digital Data-Interconnect Facility MD-92A/G. It authorizes categories of maintenance for specific maintenance functions on repairable items and components and the tools and equipment required to perform each function. This appendix may be used as an aid in planning maintenance operations.

C-2. Maintenance Function

Maintenance functions will be limited to and defined as follows:
a. Inspect. To determine the serviceability of an item by comparing its physical, mechanical, and/or electrical characteristics with established standards through examination.
b. Test. To verify serviceability and to detect incipient failure by measuring the mechanical or electrical characteristics of an item and comparing those characteristics with prescribed standards.
c. Service. Operations required periodically to keep an item in proper operating condition, i.e., to clean, preserve, drain, paint, or to replenish fuel/ lubricants/hydraulic fluids or compressed air supplies.
d. Adjust. Maintain within prescribed limits by bringing into proper or exact position, or by setting the operating characteristics to the specified parameters.
e. Align. To adjust specified variable elements of an item to about optimum or desired performance.
f. Calibrate. To determine and cause corrections to be made or to be adjusted on instruments or test measuring and diagnostic equipment used in precision measurement. Consists of the comparison of two instruments, one of which is a certified standard of known accuracy, to detect and adjust any discrepancy in the accuracy of the instrument being compared.
g. Install. The act of emplacing, seating, or fixing into position an item, part, module (component or assembly) in a manner to allow the proper functioning of the equipment/system.
h. Replace. The act of substituting a serviceable like-type part, subassembly, model (component or assembly) for an unserviceable counterpart.
i. Repair. The application of maintenance services (inspect, test, service, adjust, align, calibrate, replace) or other maintenance actions (welding, grinding, riveting, straightening, facing, remachining, or resurfacing) to restore serviceability to an item by correcting specific damage, fault, malfunction, or failure
in a part, subassembly, module/component/assembly, end item or system. This function does not include the trial and error replacement of running spare type items such as fuses, lamps, or electron tubes.
j. Overhaul. That periodic maintenance effort (service/action) necessary to restore an item to a completely serviceable/operational condition as prescribed by maintenance standards (e.g., DMWR) in appropriate technical publications. Overhaul is normally the highest degree of maintenance performed by the Army. Overhaul does not normally return an item to like-new condition.
k. Rebuild. Consists of those services/actions necessary for the restoration of unserviceable equipment to a like-new condition in accordance with original manufacturing standards. Rebuild is the highest degree of material maintenance applied to Army equipment. The rebuild operation includes the act of returning to zero those age measurements (hours, miles, etc.) considered in classifying Army equipment/components.

C-3. Column Entries

a. Column 1, Group Number. Column 1 lists group numbers, the purpose of which is to identify components, assemblies, subassemblies and modules with the next higher assembly.
b. Column 2, Component/Assembly. Column 2 contains the noun names of components, assemblies, subassemblies, and modules for which maintenance is authorized.
c. Column 3, Maintenance Functions. Column 3 lists the functions to be performed on the item listed in column 2. When items are listed without maintenance functions, it is solely for purpose of having the group numbers in the MAC and RPSTL coincide.
d. Column 4, Maintenance Category. Column 4 specifies, by the listing of a "worktime" figure in the appropriate subcolumn(s), the lowest level of maintenance authorized to perform the function listed in column 3. This figure represents the active time required to perform that maintenance function at the indicated category of maintenance. If the number or complexity of the tasks within the listed maintenance function varies at different maintenance categories, appropriate "worktime"
figure will be shown for each category. The number of man-hours specified by the "worktime" figure represents the average time required to restore an item (assembly, subassembly, component, module, end item or system) to a serviceable condition under typical field operating conditions. This time includes preparation time, troubleshooting time and quality assurance/quality control time in addition to the time required to perform the specific tasks identified for the maintenance functions authorized in the maintenance allocation chart. If an intermediate facility (L) has been designated, the maintenance information required to perform this category of maintenance will be provided in the DMWR. Subcolumns of column 4 are as follows:

C- Operator/Crew
O- Organizational
F-- Direct Support
L- Selected repair activity (SRA). If a SRA facility is not available, this category of maintenance will be accomplished at a depot.
D-- Depot
e. Column 5, Tools and Equipment. Column 5 specifies by code, those common tools sets (not individual tools) and special tools, test, and support equipment required to perform the designated function.

SECTION II MAINTENANCE ALLOCATION CHART
FOR
MODEM, DIGITAL DATA - INTERCONNECT FACILITY MD-920 A/G

Change 2 C-3

SECTION II MAINTENANCE ALLOCATION CHART
 FOR

MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
(1) \\
Group Number
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(2) \\
Component/ Assembly
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(3) \\
Maintenance Function
\end{tabular}} \& \multicolumn{5}{|c|}{(4) Maintenance Category} \& \multirow[t]{2}{*}{(5)

Tools and
Equipment}

\hline \& \& \& C \& 0 \& F \& L' ${ }^{\text {I }}$ \& D \&

\hline 0201 \& Synthesizer and Bit Sync Assy, A2A1 \& | Inspect |
| :--- |
| Test |
| Align | \& \& 0.1 \& 0.5 \& 0.4 \& \& \[

$$
\begin{aligned}
& 14 \\
& 17,11, \\
& 12,28
\end{aligned}
$$
\]

\hline \& \& Repair ${ }^{5}$ \& \& 0.1 \& 17,4 \& \& \&

\hline 020101 \& Counter Encoder, A2A1A1A1 \& | Inspect |
| :--- |
| Test |
| Replace |
| Repair | \& \& 0.1 \& 0.1 \& \& 0.1

0.1 \& $$
\begin{aligned}
& 26,27 \\
& 28 \\
& 17
\end{aligned}
$$

\hline 020102 \& Program Divider, A2A1A1A2 \& | Inspect |
| :--- |
| Test Replace Repair | \& \& 0.1 \& 0.1 \& \& 0.1

0.1 \& $$
\begin{aligned}
& 26,27 \\
& 28 \\
& 17
\end{aligned}
$$

\hline 020103 \& Reference Oscillator, A2A1A1A3 \& | Inspect Test |
| :--- |
| Adjust Replace Repair | \& \& \& 0.1

0.1 \& 0.4
0.1

0.1 \& \& $$
\begin{aligned}
& 2,6,7,8, \\
& 10,12 \\
& 2,6,8 \\
& 28 \\
& 17
\end{aligned}
$$

\hline 020104 \& Reference Divider, A2A1A1A5 \& | Inspect |
| :--- |
| Test |
| Replace |
| Repair | \& \& 0.1 \& 0.1 \& \& 0.1

0.1 \& $$
\begin{aligned}
& 26,27 \\
& 28 \\
& 17
\end{aligned}
$$

\hline 020105 \& 45 MHz Phase Lock Loop, A2A1A1A6 \& | Inspect Test |
| :--- |
| Adjust Replace Repair | \& \& 0.1 \& 0.1 \& \[

$$
\begin{aligned}
& 0.4 \\
& 0.1 \\
& 0.1
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 1,6,7,8, \\
& 11 \\
& 1,6,11 \\
& 28 \\
& 17
\end{aligned}
$$
\]

\hline
\end{tabular}

Change 2 C-4

SECTION II MAINTENANCE ALLOCATION CHART
 FOR

MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

(1) Group Number	(2) Component/ Assembly	(3)	(4) Maintenance Category					(5)
		Function	C	0	F	L^{11}	D	Tools and Equipment
020106	45-MHz Amplifier, A2A1A2A8	Inspect Test Adjust Replace Repair		0.1	0.1	0.4 0.1 0.1		$\begin{aligned} & 2,6,7,9 \\ & 10,14 \\ & 3,5,6,7 \\ & 28 \\ & 17 \end{aligned}$
020107	Mixer/Output Amplifier, A2A1A1A10	Inspect Test Adjust Replace Repair		0.1	0.1	0.4 0.1 0.1		$\begin{aligned} & 2,5,6,7 \\ & 8,9,14 \\ & 2,5,6,7 \\ & 8,9,14 \\ & 28 \\ & 17 \end{aligned}$
020108	15-MHz Amplifier, A2A1A1A11	Inspect Test Replace Repair		0.1 0.1		0.4 0.1		$\begin{aligned} & 1,5,6,9 \\ & 10,11,13 \\ & 28 \\ & 17 \end{aligned}$
020109	Stable Clock, A2A1A1A12	Inspect Test Replace Repair		0.1	0.1	0.4	0.1	$\begin{aligned} & 2,5,6,7, \\ & 8,10,12, \\ & 14,15 \\ & 28 \\ & 17 \end{aligned}$
020110	Reference Divider, A2A1A1A14 (Same as group 020104)							

C-5

SECTION II MAINTENANCE ALLOCATION CHART
FOR
MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

(1) Group Number	(2) Component/ Assembly	(3) Maintenance Function	(4) Maintenance Category					(5) Tools and Equipment
			C	0	F	L ${ }^{11}$	D	
020111	Digital to Analog Converter, A2A1A1A15	Inspect Test Replace Repair		0.1	0.1		0.1 0.1	$\begin{aligned} & 26,27 \\ & 28 \\ & 17 \end{aligned}$
020112	Loop Filter, A2A1A1A16	Inspect Test Replace Repair		0.1	0.1		0.1 0.1	$\begin{aligned} & 26,27 \\ & 28 \\ & 17 \end{aligned}$
020113	Transmit Bit Detector, A2A1A1A17	Inspect Test Replace Repair			0.1	0.1	0.1 0.1	$\begin{aligned} & 26,27 \\ & 28 \\ & 17 \end{aligned}$
020114	Line Driver, A2A1A1A21	Inspect Test Replace Repair		0.1	0.1	0.3 0.1		$\begin{aligned} & 4,6,8,12 \\ & 28 \\ & 17 \end{aligned}$
020115 020116	Line Driver, A2A1A 2 A22 (Same as group 020114) Line Driver, AA12A1A23 (Same as group 020114)							
020117	LOS/Cable Receiver/Decoder, A21A2A1	Inspect Test Adjust Replace Repair		0.1	0.1	$\begin{aligned} & 0.3 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 4,6,11 \\ & 12,13 \\ & 4,6,12 \\ & 28 \\ & 17 \end{aligned}$

Change 2 C-6

SECTION II MAINTENANCE ALLOCATION CHART
 FOR

MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

(1) Group Number	(2) Component/ Assembly	(3)	(4) Maintenance Category					(5) Tools and Equipment
		Maintenance Function	C	0	F	L^{11}	D	
020118020119	NRZ Interface, A2A1A2A2	Inspect		0.1	0.1			
		Test					0.3	15,26,27
	LOS/Cable Driver, A2A1A2A3	Repair					0.1	17
		Inspect		0.1		0.3		
020119		Test						4,6,12
		Replace			0.1			28
		Repair					0.1	17
020120	Input Interface, A2A1A2A4	Inspect		0.1				
		Test					0.1	26,27
		Replace			0.1			28
		Repair					0.1	17
020121	Coder Interface, A2A1A2A5	Inspect		0.1				
		Test			0.1		0-1	26,27
		Replace						28
		Repair					0.1	17
020122	Coder Switch, A2A1A2A6	Inspect		0.1				
		Test					0.1	26,27
		Replace			0.1			28
		Repair					0.1	17
020123	11 -Bit PRN Sequence Generato A2A1A2A7			0.1				
		Test Replace			0.1		0.1	26,27 28
		Repair					0.1	17
020124	Error Comparator, AA12A2AS	Inspect		0.1				
		Test					0.1	26,27
		Replace			0.1			28
		Repair					0.1	17

Change 2 C-7

SECTION II MAINTENANCE ALLOCATION CHART
 FOR

MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

(1) Group Number	(2) Component/ Assembly	(3)	(4) Maintenance Category					(5)
		Function	C	0	F	L"	D	Equipment
020125	D/A Meter, A2A1A2A9	Inspect Test Replace Repair		0.1	0.1		$\begin{array}{\|l\|} 0.1 \\ 0.1 \end{array}$	$\begin{aligned} & 26,27 \\ & 28 \\ & 17 \end{aligned}$
020126	Alarm Circuits, A2A1A10	Inspect Test Replace Repair		0.1	0.1		0.1 0.1	$\begin{aligned} & 26,27 \\ & 28 \\ & 17 \end{aligned}$
020127	Transmit Bit Detector, A2A1A2A11 (Same as group 020113)							
020128	Loop Filter, A2A1A2A12 (Same as group 020112)							
020129	Digital-to-Analog Converter, A2A1A2A13 (Same as group 020111)							
020130	15-MHz Amplifier, A2A1A2A14 (Same as group 020108)							
020131	Mixer/Output Amplifier, A2A1A2A15 (Same as group 020107)							
020132	45-MHz Amplifier, A2A1A2A16 (Same as group 020106)							
020133	45-MHz Phase Lock Loop, A2A1A2A18 (Same as group 020105)							

Change 2 C-8

SECTION II MAINTENANCE ALLOCATION CHART
 FOR

MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

(1) Group Number	(2) Component/ Assembly	(3)	(4) Maintenance Category					(5)
		Maintenance Function	C	0	F	L ${ }^{11}$	D	Tools and Equipment
020134	Reference Divider, A2A1A2A20 (Same as group 020104)							
020135	Reference Oscillator, A2A1A2A21 (Same as group 020103)							
020136	Program Divider, A2A1A2A23 (Same as group 020102)							
020137	Counter Encoder, A2A1A2A24 (Same as group 020101)							
0202	Blower, A2B1; Fan Tubeaxial	Inspect Test Replace Repair		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		0.4		$\begin{aligned} & 15 \\ & 17 \\ & 15,17 \end{aligned}$
0203	Blower, A2B2; Fan Tubeaxial (Same as group 0202)							
0204	Power Supply, A2PS1	Inspect Adjust Test		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	0.5			$\begin{aligned} & 11,25,28 \\ & 11,12,15, \\ & 30,31 \end{aligned}$
		Test				0.4		$\begin{aligned} & 11,12,15, \\ & 30,31,32 \end{aligned}$
		Replace Repair Repair			$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	0.6		$\begin{aligned} & 17 \\ & 18-26,28 \\ & 18-26,28 \end{aligned}$

Change $2 \mathrm{C}-9$

SECTION II MAINTENANCE ALLOCATION CHART

FOR
MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

(1) Group Number	(2) Component/ Assembly	(3) Maintenance Function	(4) Maintenance Category					Tools andEquipment
			C	0	F	L^{11}	D	
020401	Transformer Assembly, A1	Test Replace Repair				0.1 0.2 0.2		$\begin{aligned} & 12,15 \\ & 17 \\ & 17 \end{aligned}$
020402	Printed Circuit Bond, A2	Replace Test			0.1	0.4		$\begin{aligned} & 28 \\ & 11,12,15, \\ & 30,31,33, \\ & 34,35 \end{aligned}$
		Repair				0.2		17
		Adjust				0.4		$\begin{aligned} & 11,12,15, \\ & 30,31,33 \\ & 34,35 \end{aligned}$
020403	Circuit Card Assembly, A3	Test Replace Repair				0.3 0.4 0.2		$\begin{aligned} & 12,15 \\ & 17 \\ & 17 \end{aligned}$
020404	Component Board Assembly Number 1, A4	Test Replace Repair				0.2 0.3 0.2		$\begin{aligned} & 12,15 \\ & 17 \\ & 17 \end{aligned}$
020405	Component Board Assembly Number 2, A5	Test Replace Repair				$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 12,15 \\ & 17 \\ & 17 \end{aligned}$
020406	Heat Sink Assembly, Number 1, A6	*						
020407	Heat Sink Assembly, Number 2, A7	*						
020408	Heat Sink Assembly, Number 3, A8	*						

*All components with no maintenance function indicated are repaired at the next higher assembly of end item.

Change $2 \mathrm{C}-10$

SECTION II MAINTENANCE ALLOCATION CHART
 FOR

MODEM, DIGITAL DATA - INTERCONNECT FACILITUY MD-920 A/G

(1) Group Number	(2) Component/ Assembly	(3) Maintenance Function	(4) Maintenance Category					Tools and Equipment
			C	0	F	L^{11}	D	
020409	Terminal Board Assembly, A9	Test Replace Repair			$\begin{aligned} & 0.2 \\ & 0.3 \\ & 0.3 \end{aligned}$			$\begin{aligned} & 11,12,15 \\ & 17 \\ & 17 \end{aligned}$
020410	Rectifier Assembly, A10	Test Replace Repair			$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.4 \end{aligned}$			$\begin{aligned} & 12,15 \\ & 17 \\ & 17 \end{aligned}$
0205	Cable, A2W2	Inspect Test Replace Repair		0.2	0.1	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 15 \\ & 17-24 \end{aligned}$
0206	Cable, A2W3 (Some as group 0205)							
0207	Cable, A2W9 (Some as group 0205)							
0208	Cable, A2W11 (Same as group 0205)							
0209	Oscillator, A2Y1	Inspect Test Adjust Replace		0.1	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$			$\begin{aligned} & 12,25,28 \\ & 12,17, \\ & 25,28 \\ & 17 \end{aligned}$
0210	Oscillator A2Y2 (Same as group 0209)							

Change $2 \mathrm{C}-11$

TABLE 1. TOOL TEST EQUIPMENT REQUIREMENTS
FOR
MODEM, DIGITAL DATA - INTERCONNECT FACILITY MD-920A/G

Tool or Test Equipment Ref Code	Maintenance Category	Nomenclature	National/NATO Stock Number	Tool Number
1	L,D	Card Test Fixture T-14301, SM.D868401	Note	$\begin{aligned} & \text { T-14301 } \\ & (91417) \end{aligned}$
2	L,D	Card Test Fixture T-14303, SM-w68410	Note	$\begin{aligned} & \text { T-14303 } \\ & (91417) \end{aligned}$
3	L,D	Card Test Fixture T-14304, SM-D868416	Note	$\begin{aligned} & \text { T-14304 } \\ & (91417) \end{aligned}$
4	L,D	Card Test Fixture T-14306	Note	$\begin{aligned} & \text { T-14306 } \\ & (91417) \end{aligned}$
5	L,D	Attenuator Fixture T-14307 (2 required) , SM-D877511 (91417)	Note	T-14307
6	L,D	Power Supply Fixture T-14318 (91417)	Note	T-14318
7	F,L,	Power Meter, Millivac MV828B	$\begin{aligned} & 6625-00- \\ & 437-4865 \end{aligned}$	$\begin{aligned} & \text { MV828B } \\ & (85711) \end{aligned}$
8	C,F,L, D	Electronic Counter, HP 5245L with	$\begin{aligned} & 6625-00- \\ & 269-4593 \end{aligned}$	$\begin{aligned} & \text { HP 5245L } \\ & (28480) \end{aligned}$
9	L,D	HP 5253 Plugin	$\begin{aligned} & 6625-00- \\ & 226-3483 \end{aligned}$	
		Spectrum Analyzer IP-1216AM with	$\begin{aligned} & 6625-00- \\ & 424-4370 \end{aligned}$	$\begin{aligned} & \text { HP 141T } \\ & \text { (28480) } \end{aligned}$
		Spectrum Analyzer Plug-In (RF) P-11 399A,	$\begin{aligned} & 6625-00 \\ & 432-5055 \end{aligned}$	$\begin{aligned} & \text { HP 8553B } \\ & (28480) \end{aligned}$
		Sectrum Analyzer Plug-In (IF) PL-1388/U	6625-00-	HP 8552B
10	L,D	Sweep Generator, HP 8601A	$\begin{aligned} & 6625-00- \\ & 135-9866 \end{aligned}$	$\begin{aligned} & \text { HP 8601A } \\ & (28480) \end{aligned}$
11	O,F,L,D	Digital Voltmeter, Fluke 800QA-01	$\begin{aligned} & 6625-00- \\ & 210-7584 \end{aligned}$	8000A-01 (89536)

Change 2 C-12

TABLE 1. TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
MODEM, DIGITAL DATA - INTERCONNECT FACILITY MD-920A/G - Continued

Tool or Test Equipment Ref Code	Maintenance Category	Nomenclature	National/NATO Stock Number	Tool Number
12	F,L,D	Oscilloscope, Tektronix 485A	$\begin{aligned} & 6625-00 \\ & 485-8181 \end{aligned}$	$\begin{aligned} & \text { 485A } \\ & (80009) \end{aligned}$
13	L,D	Precision Power Supply, Power Design 4010	Note	$\begin{aligned} & 4010 \\ & (98095) \end{aligned}$
14	L,D	50-ohm Termination, Amphenol 35725-51	$\begin{aligned} & 5985-00 \\ & 843-1671 \end{aligned}$	$\begin{aligned} & 35725-51 \\ & (74868) \end{aligned}$
15	O,F,L,D	Multimeter, Simpson 270	$\begin{aligned} & 6625-00- \\ & 897-4051 \end{aligned}$	$\begin{aligned} & 270 \\ & (55026) \end{aligned}$
16	L,D	50-ohm feed-thru termination TEK 011-0049-01	$\begin{aligned} & 5985-00- \\ & 087-4954 \end{aligned}$	$\begin{aligned} & 011-0049- \\ & 01 \text { (80009) } \end{aligned}$
17	O,F, L, D	Tool Kit, Electronic Equipment TK-105/G	$\begin{aligned} & 5180-00- \\ & 610-8177 \end{aligned}$	
18	L,D	Pin Extraction Tool RX 20-25, Burndy	$\begin{aligned} & 5120-00- \\ & 808-6873 \end{aligned}$	$\begin{aligned} & \text { RX 20-25 } \\ & (09922) \end{aligned}$
19	L,D	Pin Extraction Tool, Tetradyne	Note	$\begin{aligned} & 600-0027- \\ & 000(31413) \end{aligned}$
20	L,D	Pin Insertion Tool MS 2425620	$\begin{aligned} & 5120-00- \\ & 079-4598 \end{aligned}$	
21	L,D	Pin Insertion Tool MS 242516	$\begin{aligned} & 5120-00- \\ & 079-4599 \end{aligned}$	
22	L,D	Pin Extraction Tool MS 24256R20	$\begin{aligned} & 5120-00- \\ & 079-4601 \end{aligned}$	
23	L,D	Pin Extraction Tool MS 24256P16	$\begin{aligned} & 5120-00- \\ & 079-4602 \end{aligned}$	
24	L,D	Pin Crimp Tool and Turret M22520-1-01 and M22520-1-02	$\begin{aligned} & 5120-00- \\ & 165-3912, \\ & 016-6620 \end{aligned}$	$\begin{aligned} & (81349) \\ & (81349) \end{aligned}$

TABLE 1. TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
MODEM, DIGITAL DATA - INTERCONNECT FACILITY MD-920A/G - Continued

Tool or Test Equipment Ref Code	Maintenance Category	Nomenclature	National/NATO Stock Number	Tool Number
25	O,F,L, D	Card Extender (2) SM-D-759649		$\begin{aligned} & 759649 \\ & (91417) \end{aligned}$
26	L,D	Test System Logic Circuit, GR-1792	$\begin{aligned} & 6625-00- \\ & 575-8024 \end{aligned}$	$\begin{aligned} & \text { GR-1792 } \\ & (24655) \end{aligned}$
27	L,D	Digital Card Test Adapter, MD 8W405	Note	T-14146
28	O1F,L, D	Cord Puller, Protolob A7920	Note	$\begin{aligned} & 7920 \\ & (31477) \end{aligned}$
29	C, F, D	Error Rate Counter TS-3641/G (Harris 7002)	Note	$\begin{aligned} & 7002 \\ & (91417) \end{aligned}$
30	F,L,D	Auto Tranformers, Variac W50M	$\begin{aligned} & 6120-00- \\ & 894-1826 \end{aligned}$	$\begin{aligned} & \text { W50M } \\ & (24655) \end{aligned}$
31	F,L,D	Power Supply/Oscillator Test Fixture, SM-D-882197	Note	$\begin{aligned} & \text { T-14394 } \\ & (91417) \end{aligned}$
32	L,D	AC Voltmeter, HP400F	$\begin{aligned} & 6625-00 \\ & 403-6 S 26 \end{aligned}$	$\begin{aligned} & \text { HP400F } \\ & (28480) \end{aligned}$
33	L,D	Resistor Decade Box, Gen Rod 1434M	$\begin{aligned} & 6625-00 \\ & 935-1470 \end{aligned}$	$\begin{aligned} & \text { GR-1434M } \\ & (24655) \end{aligned}$
34	L,D	Power Supply Test Set, SM-C-742003	Note	(91417)
35	L, D	Test Set, ACDC 66-991-000	Note	$\begin{aligned} & \text { 66-991-000 } \\ & (08742) \end{aligned}$
36	L,D	Interface Test Unit SM-D-877812	Note	$\begin{aligned} & \text { T-14397 } \\ & (91417) \end{aligned}$
37	F,L,D	Oscilloscope Probe (X1O), Tektronix P6054A	$\begin{aligned} & 6625-00 \\ & 098-8141 \end{aligned}$	$\begin{aligned} & \text { P6054A } \\ & (80009) \end{aligned}$

TABLE 1. TOOL AND TEST EQUIPMENT REQUIREMENTS
FOR
MODEM, DIGITAL DATA - INTERCONNECT FACILITY MD-920A/G - Continued

Tool or Test Equipment Ref Code	Maintenance Category	Nomenclature	National/NATO Stock Number	Tool Number
38	L,D	Function Generator, Wavetek 142	Note	$\begin{aligned} & 142 \\ & (23338) \end{aligned}$
39	L,D	Pulse Generator, Datapulse 110B (2 ea)	Note	110 B
40	L,D	Power Supply Fixture, SM-D-868418	Note	
41	L,D	Signal Generator, HP 606B	Note	$\begin{aligned} & \text { 606B } \\ & (28480) \end{aligned}$
42	L,D	Signal Generator, HP 608F	Note	$\begin{aligned} & 608 \mathrm{~F} \\ & (23480) \end{aligned}$
43	L,D	Synchronizer, HP 8708A	Note	$\begin{aligned} & 8708 \mathrm{~A} \\ & (28480) \end{aligned}$

NOTE: The National stock numbers (NSN'\&) that are missing from list have been requested and will be added by a changes upon receipt. Cogs

By Order of the Secretary of the Army:

Official:
PAUL T. SMITH
Major General, United States Army
The Adjutant General
DISTRIBUTION:
Active Army:
USASA (2)
COE (1)
TSG (1)
USAARENBD (1)
DARCOM (1)
TRADOC (2)
ARADCOM (2)
ARADCOM Rgn (2)
OS Ma j Comd (4)
LOGCOMDS (3)
MICOM (2)
TECOM (2)
USACC (4)
MDW (1)
Armies (2)
Corps (2)
HISA (Ft Monmouth) (33)
Svc Colleges (1)
USASESS (5)
USAADS (2)
USAFAS (2)
NG: None
USAR: None
For explanation of abbreviations used, see AR 310-50
FRED C. WEYAND
General, United States Army Chief of Staff

```
USAARMS (2)
USAIS (2)
USAES (2)
USANTCS (3)
MAAG (1)
USARMIS (1)
Instls (1)except
    Fort Carson (5)
    Fort Gillem (10)
    Fort Gordon (10)
    Fort Huachuca (10)
    Ft Richardson (ECOM Ofc) (2)
    LBAD (14)
    SAAD (30)
    TOAD (14)
    SHAD (3)
SigFLDMS (1)
USAERDAA (1)
USAERDAW (1)
Units org under fol TOE: None
```


PIN: 018143-000

